Some sufficient conditions for the existence of positive solutions to the equation -Δu+a(x)u=u 2 * -1 in bounded domains
Annales de l'I.H.P. Analyse non linéaire, Volume 13 (1996) no. 2, p. 185-227
@article{AIHPC_1996__13_2_185_0,
     author = {Passaseo, Donato},
     title = {Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u + a (x) u = u^{2^\ast -1}$ in bounded domains},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Gauthier-Villars},
     volume = {13},
     number = {2},
     year = {1996},
     pages = {185-227},
     zbl = {0848.35046},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1996__13_2_185_0}
}
Passaseo, Donato. Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u + a (x) u = u^{2^\ast -1}$ in bounded domains. Annales de l'I.H.P. Analyse non linéaire, Volume 13 (1996) no. 2, pp. 185-227. http://www.numdam.org/item/AIHPC_1996__13_2_185_0/

[1] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., t. 14, 1973, pp. 349-381. | MR 370183 | Zbl 0273.49063

[2] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 253-294. | MR 929280 | Zbl 0649.35033

[3] V. Benci and G. Cerami, Existence of positive solutions of the equation -Δu + a(x)u = uN+2/N-2 in RN, J. Funct. Anal., Vol. 88, No. 1, 1989, pp. 90-117. | MR 1033915 | Zbl 0705.35042

[4] H. Brezis, Elliptic equations with limiting Sobolev exponents, The impact of topology, In "Proceedings 50th Anniv. Courant Inst"., Comm. Pure Appl. Math., Vol. 39, 1986, pp. 517-539. | MR 861481 | Zbl 0601.35043

[5] H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potential, J. Math. Pures Appl., Vol. 58, 1979, pp. 137-151. | MR 539217 | Zbl 0408.35025

[6] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Vol. 36, 1983, pp. 437-477. | MR 709644 | Zbl 0541.35029

[7] J.M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris, Sér. I Math., Vol. 299, 1984, pp. 209-212. | MR 762722 | Zbl 0569.35032

[8] E.N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc., Vol. 20, 1988, pp. 600-602. | MR 980763 | Zbl 0646.35027

[9] W. Ding, Positive solutions of Δu + un+2/ n-2 = 0 on contractible domains, J. Partial Differential Equations 2, No. 4, 1989, pp. 83-88. | MR 1027983 | Zbl 0694.35067

[10] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, In "Mathematical Analysis and Applications", L. Nachbin, Ed.), Part A. Academic Press, Orlando, FL., 1981, pp. 370-401. | MR 634248

[11] J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., Vol. 28, 1975, pp. 567-597. | MR 477445 | Zbl 0325.35038

[12] P.L. Lions, The concentration - compactness principle in the calculus of variations: the limit case, Rev. Mat. Iberoamericana 1, 1985, pp. 145-201; 45-121. | MR 834360 | Zbl 0704.49005

[13] D. Passaseo, Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math., Vol. 65, 1989, pp. 147-166. | MR 1011429 | Zbl 0701.35068

[14] D. Passaseo, Esistenza e molteplicità di soluzioni positive per l'equazione -Δu+a(x)u = u2*-1 in domini limitati, Preprint, No. 563, Dip. Mat. Pisa, 1990.

[15] D. Passaseo, Esistenza e molteplicità di soluzioni positive per l'equazione -Δu+(α(x)+ λ)u= un+2/n-2 in Rn, Preprint, No. 565, Dip. Mat. Pisa, 1990. | MR 1159995

[16] D. Passaseo, Su alcune successioni di soluzioni positive di problemi ellittici con esponente critico, Rend. Mat. Acc. Lincei s. 9.v. 3, 1992, pp. 15-21. | Zbl 0778.35036

[17] D. Passaseo, Elliptic equations with critical nonlinearity, The effect of the domain shape on the number of positive solutions, In preparation. | Zbl 1108.35054

[18] D. Passaseo, Multiplicity of positive solutions for the equation Δu +λu+u2*-1 = 0 in noncontractible domains, Topological Methods in Nonlinear Analysis, Journal of the J. Schauder Center., Vol. 2, 1993, pp. 343-366. | MR 1251943 | Zbl 0810.35029

[19] D. Passaseo, Categoria relativa e molteplicità di soluzioni positive per l'equazione Δu +u2*-1 = 0, Preprint, Dip. Matem. Pisa, No. 701, 1992. | MR 1151569

[20] S.I. Pohozaev, Eigenfunctions of the equation Δu+λf(u) = 0, Sov. Math. Dokl., Vol. 6, 1965, pp. 1408-1411. | MR 192184 | Zbl 0141.30202

[21 ] O. Rey, Sur un problème variationnel non compact: 1'effect de petits trous dans le domaine, C. R.Acad. Sci. Paris, t. 308, Série I, 1989, pp. 349-352. | MR 992090 | Zbl 0686.35047

[22] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., Vol. 187, 1984, pp. 511-517. | MR 760051 | Zbl 0535.35025

[23] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl., Vol. 110, 1976, pp. 353-372. | MR 463908 | Zbl 0353.46018