Liouville theorems and blow up behaviour in semilinear reaction diffusion systems
Annales de l'I.H.P. Analyse non linéaire, Volume 14 (1997) no. 1, pp. 1-53.
@article{AIHPC_1997__14_1_1_0,
     author = {Andreucci, D. and Herrero, M. A. and Vel\'azquez, J. J. L.},
     title = {Liouville theorems and blow up behaviour in semilinear reaction diffusion systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--53},
     publisher = {Gauthier-Villars},
     volume = {14},
     number = {1},
     year = {1997},
     mrnumber = {1437188},
     zbl = {0877.35019},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_1997__14_1_1_0/}
}
TY  - JOUR
AU  - Andreucci, D.
AU  - Herrero, M. A.
AU  - Velázquez, J. J. L.
TI  - Liouville theorems and blow up behaviour in semilinear reaction diffusion systems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1997
SP  - 1
EP  - 53
VL  - 14
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_1997__14_1_1_0/
LA  - en
ID  - AIHPC_1997__14_1_1_0
ER  - 
%0 Journal Article
%A Andreucci, D.
%A Herrero, M. A.
%A Velázquez, J. J. L.
%T Liouville theorems and blow up behaviour in semilinear reaction diffusion systems
%J Annales de l'I.H.P. Analyse non linéaire
%D 1997
%P 1-53
%V 14
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPC_1997__14_1_1_0/
%G en
%F AIHPC_1997__14_1_1_0
Andreucci, D.; Herrero, M. A.; Velázquez, J. J. L. Liouville theorems and blow up behaviour in semilinear reaction diffusion systems. Annales de l'I.H.P. Analyse non linéaire, Volume 14 (1997) no. 1, pp. 1-53. http://archive.numdam.org/item/AIHPC_1997__14_1_1_0/

[1] D. Amadori, Unstable blow up patterns, to appear in Diff. and Integr. Equations. | MR | Zbl

[2] D. Andreucci, New results on the Cauchy problem for parabolic systems and with strongly nonlinear sources, Manuscripta Math., Vol. 77, 1992, pp. 127-159 | MR | Zbl

[3] D. Andreucci, Degenerate parabolic equations with initial data measures, to Trans. Amer. Mat. Soc. | MR | Zbl

[4] D. Andreucci and E. Dibenedetto, On the Cauchy problem and initial traces for a of evolution equations with strongly nonlinear sources, Ann. Sc. Normale Pisa, V 1991. | Numdam | Zbl

[5] J. Bebernes and A. Lacey, Finite-time blow up for a particular parabolic system, J. Math. Anal., Vol. 21, no. 6, 1990, pp. 1415-1425. | MR | Zbl

[6] J. Bebernes and A. Lacey, Finite-time blow up for semilinear reactive-diffusive systems, to appear in J. Diff. Eq.

[7] A. Bressan, On the asymptotic shape of blow up, Indiana Univ. Math. J., Vol. 39, no. 4 1990, pp. 947-960 | MR | Zbl

[8] A. Bressan, Stable blow up patterns, J. Diff. Equations, Vol. 98, 1992, pp. 57-75. | MR | Zbl

[9] J. Bricmont and A. Kupiainen, Universality in blow up for nonlinear heat equations, preprint, 1993. | MR

[10] G. Caristi and E. Mitidieri, Blow up estimates of positive solutions of a parabolic system to appear in J. Diff. Eq. | MR | Zbl

[11] E. Dibenedetto, Degenerate parabolic equations, Springer-Verlag, New York, 1993. | MR | Zbl

[12] M. Escobedo and M.A. Herrero, Boundedness and blow up for a semilinear reaction diffusion system, J. Diff. Eq., Vol. 89, no. 1, 1991, pp. 176-202. | MR | Zbl

[13] M. Escobedo and M.A. Herrero, A semilinear parabolic system in a bounded domain Annali Mat. Pura Appl. (IV), CLXV, 1993, pp. 315-336. | MR | Zbl

[14] M. Escobedo and H.A. Levine, Critical blow up and global existence numbers for a weakly coupled system of reaction-diffusion equations, to appear in Trans. Amer. Math. Soc. | MR

[15] S. Filippas and R.V. Kohn, Refined asymptotics for the blow up of ut - Δu = up, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 821-869. | MR | Zbl

[16] S. Filippas and F. Merle, Modulation theory for the blow up of vector valued nonlinear heat equations, to appear in J. Diff. Eq. | Zbl

[17] V.A. Galaktionov and S.A. Posashkov, Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations, Diff. Urav., Vol. 22, no. 7, 1986, pp. 1165-1173. | MR | Zbl

[18] B. Gidas and J. Spruck, Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., Vol. 34, 1981, pp. 525-598. | MR | Zbl

[19] Y. Giga and R.V. Kohn, Asymptotically self-similar blow up of semilinear heat equations Comm. Pure Appl. Math., Vol. 38, 1985, pp. 297-319. | MR | Zbl

[20] Y. Giga, R.V. Kohn, Nondegeneracy of blow up for semilinear heat equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 845-884. | MR | Zbl

[21] M.A. Herrero and J.J.L. Velázquez, Blow up behaviour of one dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré, Vol. 10, no. 2, 1993, pp. 131-189. | Numdam | MR | Zbl

[22] M.A. Herrero and J.J.L. Velázquez, Flat blow up in one dimensional semilinear heat equations, Diff. and Integral Eq., Vol. 5, 1992, pp. 973-998. | MR | Zbl

[23] M.A. Herrero and J.J.L. Velázquez, Explosion de solutions d'equations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Série A, Vol. 319, 1994, pp. 141-145. | MR | Zbl

[24] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Uraltseva, Linear and quasilinear equations of parabolic type, AMS Translations of Math., Monographs, XXIII, Providence RI, 1968.

[25] F. Rothe, Global solutions of reaction-diffusion systems, in Lecture Notes in Mathematics, 1072, Springer-Verlag, New York, 1984. | MR | Zbl

[26] J.J.L. Velázquez, Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., Vol. 338, no. 1, 1993, pp. 441-464. | MR | Zbl

[27] J.J.L. Velázquez, Higher dimensional blow up for semilinear parabolic equations, Comm. in PDE, Vol. 17, no. 9&10, 1992, pp. 1567-1596. | Zbl

[28] J.J.L. Velázquez, Blow up of semilinear parabolic equations, in Recent advances in partial differential equations, eds. M. A. Herrero and E. Zuazua, Research in Applied Mathematics, Masson & J. Wiley, 1994, pp. 131-145. | Zbl

[29] J.J.L. Velázquez, Curvature blow up in perturbations of minimizing cones evolving by mean curvature flow, Ann. Scuola Normale Sup. Pisa, Serie IV, Vol. XXI, 1994, pp. 595-628. | Numdam | MR | Zbl

[30] F.B. Weissler, An L∞ blow up estimate for a nolinear heat equation, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 291-295. | MR | Zbl