@article{ASNSP_1994_4_21_4_595_0, author = {Vel\'azquez, J. J. L.}, title = {Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {595--628}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 21}, number = {4}, year = {1994}, mrnumber = {1318773}, zbl = {0926.35023}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1994_4_21_4_595_0/} }
TY - JOUR AU - Velázquez, J. J. L. TI - Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1994 SP - 595 EP - 628 VL - 21 IS - 4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1994_4_21_4_595_0/ LA - en ID - ASNSP_1994_4_21_4_595_0 ER -
%0 Journal Article %A Velázquez, J. J. L. %T Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1994 %P 595-628 %V 21 %N 4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1994_4_21_4_595_0/ %G en %F ASNSP_1994_4_21_4_595_0
Velázquez, J. J. L. Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 21 (1994) no. 4, pp. 595-628. http://archive.numdam.org/item/ASNSP_1994_4_21_4_595_0/
[AlAG] Motion by Mean Curvature through singularities for surfaces of rotation. Preprint (1991).
- - ,[AG] Shortening space curves and flow through singularities. IMA Preprint 823 (1991). | MR
- ,[A1] Parabolic equations for curves on surfaces. Part. I, Ann. Math. 132 (1990), 451-483. | MR | Zbl
,[A2] Parabolic equations for curves on surfaces. Part. II, Ann. Math. 133 (1991), 171-215. | MR | Zbl
,[A3] On the formation of singularities in the curve shortening flow. J. Differential Geom. 33 (1991), 601-633. | MR | Zbl
,[A4] Some recent results on Mean Curvature Flow. In: Recent Advances in PDE's. M.A. Herrero - E. Zuazua eds., Research in Applied Math., Masson & J. Wiley, 1994, 1-18. | MR | Zbl
,[AV1] Nonconvex collapse at rotationally symmetric hypersurfaces evolving by mean curvature flow. In preparation.
- ,[AV2] Asymptotic shape of cusp singularities in curve shortening. Duke Math. J., in press. | MR | Zbl
- ,[BDGG] Minimal cones and the Bernstein problem. Inv. Math. 7 (1969), 243-268. | MR | Zbl
- - ,[B] The motion of a surface by its mean curvature. Princeton University Press, Math. Notes, Princeton, New Jersey, 1978. | MR | Zbl
,[B1] On the asymptotic shape of blow-up. Indiana Univ. Math. J. 39 (1990), 947-960. | MR | Zbl
,[B2] Stable blow-up patterns. J. Differential Equations. 98 (1992), 57-75. | MR | Zbl
,[BQ] The existence of bounded solutions of a semilinear heat equation. J. Differential Equations 82 (1989), 207-218. | MR | Zbl
- ,[CGG] Uniqueness and existence of viscosity solutions of generalized mean curvature flow. J. Differential Geom. 33 (1991), 749-786. | MR | Zbl
- - ,[DG] Some conjectures on flow by mean curvature. Preprint.
,[ESS] Phase Transitions and generalized mean curvature flow equations. To appear in Comm. Pure Appl. Math. | MR
- - ,[ES] Motion of level sets by mean curvature I. J. Differential Geom. 33 (1991), 635-681. | MR | Zbl
- ,[F] Geometric measure theory. Springer Verlag, New York, 1969. | MR | Zbl
,[FK] Refined asymptotics for the blow-up of u t-Δu=up. Comm. Pure Appl. Math. 45 (1992), 821-869. | Zbl
- ,[FL] On the blow-up of a multidimensional semilinear heat equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 313-344. | Numdam | MR | Zbl
- ,[GH] The heat equation shrinking plane convex curves. J. Differential Geom. 23 (1986), 69-96. | MR | Zbl
- ,[GP] The equation ut=uxx +uB. Localization, asymptotic behaviour of unbounded solutions, Preprint N. 97, , Inst. Appl. Math. (1985), (in russian). | MR
- ,[GaP] Quantum Mechanics. Vol. I (1990) and vol. II (1991), Springer Verlag. | Zbl
- ,[G] Minimal surfaces and functions of bounded variation. Birkhäuser, Boston, 1984. | MR | Zbl
,[GK1] Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math. 38 (1985), 297-319. | MR | Zbl
- ,[GK2] Characterizing blow-up using similarity variables. Indiana Univ. Math. J. 36 (1987), 1-40. | MR | Zbl
- ,[GK3] Nondegeneracy of blow-up for semilinear heat equations. Comm. Pure Appl. Math. 42 (1987), 845-884. | MR | Zbl
- ,[Gr] The heat equation shrinks embedded plane curves to round points. J. Differential Geom. 26 (1987), 285-314. | MR | Zbl
,[HV1] Blow-up behaviour of one-dimensional semilinear parabolic equations. Ann. Inst. Henri Poincaré 10 (1993), 131-189. | Numdam | MR | Zbl
- ,[HV2] Flat blow-up in one-dimensional semilinear heat equations. Differential Integral Equations 5 (1992), 973-998. | MR | Zbl
- ,[HV3] Blow-up profiles in one-dimensional semilinear parabolic problems. Comm. Partial Differential Equations 17 (1992), 205-219. | MR | Zbl
- ,[HV4] Generic behaviour of one-dimensional blow-up patterns. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 19 (1992), 381-450. | Numdam | MR | Zbl
- ,[HV5] Generic behaviour near blow-up points for a N-dimensional semilinear heat equation. In preparation.
- ,[HV6] A blow-up result for semilinear heat equations in the supercritical case. To appear.
- ,[HV7] Explosion de solutions d'equations paraboliques semilinéaires supercritiques. C.R. Acad. Sci. Paris 319 (1994), 141-145. | MR | Zbl
- ,[H] Asymptotic behaviour for singularities of the mean curvature flow. J. Differential Geom. 31 (1991), 285-299. | MR | Zbl
,[LSU] Linear and quasilinear equations of parabolic type, Translations of Mathematical monographs, A.M.S. vol. 23, 1988. | Zbl
- - ,[L] Countable spectrum at eigenfunctions of a nonlinear heat conduction equation with distributed parameters. Differentsial'nye Uravneiya 24, 7 (1988), 1226-1234. | MR | Zbl
,[RS] Functional analysis, vol. II, Academic Press (1980). | MR
- ,[S] Minimal varieties in riemannian manifolds. Ann. of Math. 88 (1968), 62-106. | MR | Zbl
,[So] Motion of a set by the curvature of its boundary. J. Differential Equations 101 (1993), 313-372. | MR | Zbl
,[T] The existence of bounded solutions of a semilinear heat equation. SIAM J. Math. Anal. vol. 18, 2 (1987), 332-336. | MR | Zbl
,[V1] Classification of singularities for blowing up solutions in higher dimensions. Trans. Amer. Math. Soc. 338 (1993), 441-464. | MR | Zbl
,[V2] Higher dimensional blow-up for semilinear parabolic equations. Comm. Partial Differential Equations 17 (1992), 1567-1596. | MR | Zbl
,[V3] Estimates on the (N-1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation. Indiana Univ. Math. J. 42 (1993), 446-476. | MR | Zbl
,[V4] Blow-up for semilinear parabolic equations. In Recent Advances in PDE's, M.A. Herrero - E. Zuazua eds., Research in Applied Math., Masson & J. Wiley, 1994, 131-145. | MR | Zbl
,