@article{AIHPC_1998__15_1_113_0, author = {Caldiroli, Paolo and Nolasco, Margherita}, title = {Multiple homoclinic solutions for a class of autonomous singular systems in $\mathbb R^2$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {113--125}, publisher = {Gauthier-Villars}, volume = {15}, number = {1}, year = {1998}, mrnumber = {1614603}, zbl = {0907.58014}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1998__15_1_113_0/} }
TY - JOUR AU - Caldiroli, Paolo AU - Nolasco, Margherita TI - Multiple homoclinic solutions for a class of autonomous singular systems in $\mathbb R^2$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 1998 SP - 113 EP - 125 VL - 15 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1998__15_1_113_0/ LA - en ID - AIHPC_1998__15_1_113_0 ER -
%0 Journal Article %A Caldiroli, Paolo %A Nolasco, Margherita %T Multiple homoclinic solutions for a class of autonomous singular systems in $\mathbb R^2$ %J Annales de l'I.H.P. Analyse non linéaire %D 1998 %P 113-125 %V 15 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1998__15_1_113_0/ %G en %F AIHPC_1998__15_1_113_0
Caldiroli, Paolo; Nolasco, Margherita. Multiple homoclinic solutions for a class of autonomous singular systems in $\mathbb R^2$. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) no. 1, pp. 113-125. http://archive.numdam.org/item/AIHPC_1998__15_1_113_0/
[AB] Homoclinics for second order conservative systems, in Partial Differential Equations and Related Subjects, ed. M. Miranda, Pitman Research Notes in Math. Ser. (London, Pitman Press), 1992. | MR | Zbl
and ,[ACZ] Multiple Homoclinic Orbits for a Class of Conservative Systems, Rend. Sem. Mat. Univ. Padova, Vol. 89, 1993, pp. 177-194. | EuDML | Numdam | MR | Zbl
and ,[BC] On a Nonlinear Elliptic Equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 253-294. | MR | Zbl
and ,[BG] Homoclinic orbits on compact manifolds, J. Math. Anal. Appl., Vol. 157, 1991, pp. 568-576. | MR | Zbl
and ,[Be] Multiple homoclinic orbits for autonomous singular potentials, Proc. Roy. Soc. Edinburgh Sect. A, Vol. 124, 1994, pp. 785-802. | MR | Zbl
,[B] Existence of homoclinic motions, Vestnik Moskov. Univ. Ser. I Mat. Mekh., Vol. 6, 1980, pp. 98-103. | MR | Zbl
,[BS] A global condition for quasi random behavior in a class of conservative systems, Vol. XLIX, 1996, pp. 285-305. | MR | Zbl
and ,[C] Existence and multiplicity of homoclinic orbits for potentials on unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, Vol. 124, 1994, pp. 317-339. | MR | Zbl
,[CZES] ZELATI, I. EKELAND and E. SÉRÉ, A Variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., Vol. 288, 1990, pp. 133-160. | EuDML | MR | Zbl
[CZR] Homoclinic orbits for second order hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., Vol. 4, 1991, pp. 693-727. | MR | Zbl
and ,[G] Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., Vol. 204, 1975, pp. 113-135. | MR | Zbl
,[J] Existence of connecting orbits in a potential well, Dyn. Sys. Appl., Vol. 3, 1994, pp. 537-562. | MR | Zbl
,[L] The concentration-compactness principle in the calculus of variations, Rev. Mat. Iberoamericana, Vol. 1, 1985, pp. 145-201. | MR | Zbl
,[R] Homoclinics for a singular Hamiltonian system in R2, Proceedings of the Workshop "Variational and Local Methods in the Study of Hamiltonian Systems", ICTP (A. Ambrosetti and G. F. Dell' Antonio, eds.), World Scientific, 1995. | MR | Zbl
,[R2] Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré. Anal. Non Linéaire, Vol. 6, 1989, pp. 331-346. | Numdam | MR | Zbl
,[RT] Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., Vol. 206, 1991, pp. 473-479. | MR | Zbl
and ,[S] Homoclinic orbits on compact hypersurfaces in R2N of restricted contact type, Comm. Math. Phys., Vol. 172, 1995, pp. 293-316. | MR | Zbl
,[T] Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré. Anal. Non Linéaire, Vol. 7, 1990, pp. 427-438. | Numdam | MR | Zbl
,[T2] A note on the existence of multiple homoclinic orbits for a perturbed radial potential, Nonlinear Diff. Eq. Appl., Vol. 1, 1994, pp. 149-162. | MR | Zbl
,