@article{AIHPC_2000__17_3_307_0, author = {Ara\'ujo, V{\'\i}tor}, title = {Attractors and time averages for random maps}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {307--369}, publisher = {Gauthier-Villars}, volume = {17}, number = {3}, year = {2000}, mrnumber = {1771137}, zbl = {0974.37036}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2000__17_3_307_0/} }
Araújo, Vítor. Attractors and time averages for random maps. Annales de l'I.H.P. Analyse non linéaire, Volume 17 (2000) no. 3, pp. 307-369. http://archive.numdam.org/item/AIHPC_2000__17_3_307_0/
[1] SRB measures for partially hyperbolic diffeomorphisms, the expanding case, in preparation.
, , ,[2] An attractor for certain Hénon maps, Preprint E.T.H., Zurich.
, ,[3] Partially hyperbolic dynamical systems, Izv. Akad. Nauk. SSSR 1 (1974) 170-212. | MR | Zbl
, ,[4] Connexions heterocliniques et genericité d'une infinité de puits ou de sources, Preprint PUC-Rio, 1998.
, ,[5] Genericity of Newhouse's phenomenon vs. dominated splitting, in preparation.
, , ,[6] SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Preprint IMPA, 1997. | MR
, ,[7] Infinitely many coexisting strange attractors, Annales de l'Institut Henri Poincaré - Analyse Non-Linéaire (accepted for publication). | Numdam | Zbl
,[8] Normal hyperbolicity and robust transitivity, Preprint PUC-Rio, 1997.
, , ,[9] Random iterations of rational functions, Ergodic Theory Dynamical Systems 11 (4) (1991) 687-708. | MR | Zbl
, ,[10] Diffeomorphisms with infinitely many strange attractors, J. Complexity 6 (1990) 409-416. | MR | Zbl
, ,[11] Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits, Chaos 6 ( 1 ) (1996) 15-31. | MR | Zbl
, , ,[12] Stably ergodic diffeomorphisms, Annals of Math. 140 (1994) 295-329. | MR | Zbl
, , ,[13] Introduction to Measure and Probability, Addison-Wesley, Cambridge, MA, 1953. | MR | Zbl
,[14] Contributions to the stability conjecture, Topology 17 (4) (1978) 383-396. | MR | Zbl
,[15] Ergodic Theory and Differentiable Dynamics, Springer, Berlin, 1987. | MR | Zbl
,[16] Non-density of axion A(a) on S2, Proc. AMS Symp. Pure Math. 14 (1970) 191-202. | Zbl
,[17] Diffeomorphisms with infinitely many sinks, Topology 13 (1974) 9- 18. | MR | Zbl
,[18] The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. IHES 50 (1979) 101-151. | Numdam | MR | Zbl
,[19] Ergodic Theory, Cambridge Studies in Advanced Math., No. 2, Cambridge, 1983. | MR | Zbl
,[20] A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque (1998). | Numdam | MR | Zbl
,[21] Geometric Theory of Dynamical Systems, Springer, New York, 1982. | MR | Zbl
, ,[22] Hyperbolic and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Studies in Advanced Math., No. 35, Cambridge, 1993. | MR | Zbl
, ,[23] High dimension diffeomorphisms displaying infinitely many periodic attractors, Annals of Math. 140 (1994) 207-250. | MR | Zbl
, ,[24] Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynamical Systems 2 (1982) 417-438. | MR | Zbl
, ,[25] Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory Dynamical Systems 15 (1995) 735-757. | MR | Zbl
,[26] Global Stability of Dynamical Systems, Springer, New York, 1987. | MR | Zbl
,[27] Partially hyperbolic fixed points, Topology 10 (1971) 137-151. | MR | Zbl
,[28] Heteroclinic attractors: time averages and moduli of topological conjugacy, Bol. Soc. Bras. Mat. 25 (1) (1994) 107-120. | MR | Zbl
,[29] How often do simple dynamical processes have infinitely many coexisting sinks, Comm. Math. Phys. 106 (1986) 635-657. | MR | Zbl
, ,[30] Global attractors and bifurcations, in: Broer H.W., van Gils S.A., Hoveijn I., Takens F. (Eds.), Nonlinear Dynamical Systems and Chaos Progress in Nonlinear Partial Differential Equations and Applications (PNLDE No. 19), Birkhäuser, 1996, pp. 299-324. | MR | Zbl
,[31] Dynamics: A probabilistic and geometric perspective, in: Proceedings ICM, Documenta Mathematica, 1998. | MR | Zbl
,