@article{AIHPC_2000__17_5_617_0, author = {Arioli, Gianni and Gazzola, Filippo and Terracini, Susanna}, title = {Minimization properties of {Hill's} orbits and applications to some {N-body} problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {617--650}, publisher = {Gauthier-Villars}, volume = {17}, number = {5}, year = {2000}, mrnumber = {1791880}, zbl = {0977.70006}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2000__17_5_617_0/} }
TY - JOUR AU - Arioli, Gianni AU - Gazzola, Filippo AU - Terracini, Susanna TI - Minimization properties of Hill's orbits and applications to some N-body problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2000 SP - 617 EP - 650 VL - 17 IS - 5 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_2000__17_5_617_0/ LA - en ID - AIHPC_2000__17_5_617_0 ER -
%0 Journal Article %A Arioli, Gianni %A Gazzola, Filippo %A Terracini, Susanna %T Minimization properties of Hill's orbits and applications to some N-body problems %J Annales de l'I.H.P. Analyse non linéaire %D 2000 %P 617-650 %V 17 %N 5 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_2000__17_5_617_0/ %G en %F AIHPC_2000__17_5_617_0
Arioli, Gianni; Gazzola, Filippo; Terracini, Susanna. Minimization properties of Hill's orbits and applications to some N-body problems. Annales de l'I.H.P. Analyse non linéaire, Volume 17 (2000) no. 5, pp. 617-650. http://archive.numdam.org/item/AIHPC_2000__17_5_617_0/
[1] Le problème des n corps et les distances mutuelles, Invent. Math. 131 (1998) 151-184. | MR | Zbl
, ,[2] Critical points and nonlinear variational problems, Mémoire de la Société Mathématique de France 49, 1992. | Numdam | MR | Zbl
,[3] Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, 1993. | MR | Zbl
, ,[4] Symmetries and noncollision closed orbits for planar N-body-type potentials, Nonlin. Anal. TMA 16 (1991) 587-598. | MR | Zbl
, ,[5] Minima de l'intégrale d'action et équilibres relatifs de n corps, C. R. Acad. Sci. Paris Ser. I Math. 326 (1998) 1209-1212 (Erratum: C. R. Acad. Sci. Paris Ser. I Math. 327 (1998) 193). | MR | Zbl
, ,[6] A class of periodic solutions of the N-body problem, Celestial Mech. Dynam. Astronom. 46 (2) (1989) 177-186. | MR | Zbl
,[7] Periodic solutions for N-body type problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (5) (1990) 477-492. | Numdam | MR | Zbl
,[8] Dynamical systems with Newtonian type potentials, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 15 (1988) 467-494. | Numdam | MR | Zbl
, ,[9] Dynamical systems with Newtonian type potentials, Atti Acc. Lincei Rend. Fis. Mat. 8 (81) (1987) 271-278. | MR | Zbl
, , ,[10] Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975) 113-135. | MR | Zbl
,[11] A minimizing property of Keplerian orbits, Amer. J. Math. 99 (5) (1977) 961-971. | MR | Zbl
,[12] Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Springer, 1991. | MR | Zbl
, ,[ 13] Stable and Random Motions in Dynamical Systems, Princeton Univ. Press, 1973. | MR | Zbl
,[ 14] Lectures on Celestial Mechanics, Springer, 1971. | MR | Zbl
, ,[15] Collision solutions of the planar Newtonian three-body problem are not minima of the action functional, Nonlin. Diff. Eq. Appl. (1998).
,[16] Collisionless periodic solutions to some three-body problems, Arch. Rat. Mech. Anal. 120 (4) (1992) 305-325. | MR | Zbl
, ,[17] Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlin. Anal. TMA 22 (1) (1994) 45-62. | MR | Zbl
, ,