@article{AIHPC_2001__18_2_157_0, author = {Catrina, Florin and Wang, Zhi-Qiang}, title = {Positive bound states having prescribed symmetry for a class of nonlinear elliptic equations in $\mathbf {R}^N$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {157--178}, publisher = {Elsevier}, volume = {18}, number = {2}, year = {2001}, zbl = {1005.35045}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2001__18_2_157_0/} }
TY - JOUR AU - Catrina, Florin AU - Wang, Zhi-Qiang TI - Positive bound states having prescribed symmetry for a class of nonlinear elliptic equations in $\mathbf {R}^N$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2001 SP - 157 EP - 178 VL - 18 IS - 2 PB - Elsevier UR - http://archive.numdam.org/item/AIHPC_2001__18_2_157_0/ LA - en ID - AIHPC_2001__18_2_157_0 ER -
%0 Journal Article %A Catrina, Florin %A Wang, Zhi-Qiang %T Positive bound states having prescribed symmetry for a class of nonlinear elliptic equations in $\mathbf {R}^N$ %J Annales de l'I.H.P. Analyse non linéaire %D 2001 %P 157-178 %V 18 %N 2 %I Elsevier %U http://archive.numdam.org/item/AIHPC_2001__18_2_157_0/ %G en %F AIHPC_2001__18_2_157_0
Catrina, Florin; Wang, Zhi-Qiang. Positive bound states having prescribed symmetry for a class of nonlinear elliptic equations in $\mathbf {R}^N$. Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001) no. 2, pp. 157-178. http://archive.numdam.org/item/AIHPC_2001__18_2_157_0/
[1] Problèmes isopérimétriques de Sobolev, J. Differential Geom. 11 (1976) 573-598. | MR | Zbl
,[2] Existence and bifurcation of solutions for an elliptic degenerate problem, J. Differential Equations 134 (1997) 1-25. | MR | Zbl
, ,[3] A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983) 486-490. | MR | Zbl
, ,[4] Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli, J. Differential Equations 136 (1997) 136-165. | MR | Zbl
,[5] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989) 271-297. | MR | Zbl
, , ,[6] First order interpolation inequalities with weights, Compositio Mathematica 53 (1984) 259-275. | Numdam | MR | Zbl
, , ,[7] On the existence of extremal functions for a weighted Sobolev embedding with critical exponent, Cal. Var. and PDEs 8 (1999) 365-387. | MR | Zbl
, ,[8] Nonlinear elliptic equations on expanding symmetric domains, J. Differential Equations 156 (1999) 153-181. | MR | Zbl
, ,[9] On the Caffarelli-Kohn-Nirenberg inequalities, C. R. Acad. Sci. Paris Sér. I Math. 300 (2000) 437-442. | Zbl
, ,[10] Catrina F., Wang Z.-Q., On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence) and symmetry of extremal functions, Comm. Pure Appl. Math., in press. | Zbl
[11] On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc. 2 (1993) 137-151. | Zbl
, ,[12] A nonlinear boundary value problem with many positive solutions, J. Differential Equations 54 (1984) 429-437. | MR | Zbl
,[13] Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 1, Springer-Verlag, Berlin, 1985. | MR | Zbl
, ,[14] Symmetry of positive solutions of nonlinear elliptic equations in Rn, Adv. Math., Suppl. Studies 7A (1981) 369-402. | MR | Zbl
, , ,[15] Elliptic Partial Differential Equations of Second Order, Springer, New York, 1998. | Zbl
, ,[16] Best constant in weighted Sobolev inequality with weights being powers of distance from the origin, J. Inequal. Appl. 1 (1997) 275-292. | MR | Zbl
,[17] Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math., 1150, Springer, 1985. | MR | Zbl
,[18] Uniqueness of positive solutions of Δu−u+up=0 in Rn, Arch. Rat. Mech. Anal. 105 (1989) 243-266. | Zbl
,[19] Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differential Equations 83 (1990) 348-367. | MR | Zbl
,[20] Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math. 118 (1983) 349-374. | Zbl
,[21] Concentration compactness principle in the calculus of variations. The locally compact case. Part 1, Ann. Inst. H. Poincaré Anal. Nonlinéaire 1 (1984) 109-145. | Numdam | MR | Zbl
,[22] Concentration compactness principle in the calculus of variations. The limit case. Part 1, Rev. Mat. Ibero. 1.1 (1985) 145-201. | MR | Zbl
,[23] Semilinear elliptic equations on annuli in three and higher dimensions, Houston J. Math. 1 (1996) 199-215. | MR | Zbl
, ,[24] On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 45 (1991) 819-851. | MR | Zbl
, ,[25] The principle of symmetric criticality, Comm. Math. Phys. 69 (1979) 19-30. | MR | Zbl
,[26] Best constant in Sobolev inequality, Ann. Mat. Pure Appl. 110 (1976) 353-372. | MR | Zbl
,[27] Existence and symmetry of multi-bump solutions for nonlinear Schrödinger equations, J. Differential Equations 159 (1999) 102-137. | MR | Zbl
,[28] Singular minimization problems, J. Differential Equations 161 (2000) 307-320. | MR | Zbl
, ,[29] Minimax Theorems, Birkhäuser, Boston, 1996. | MR | Zbl
,[30] Willem M., A decomposition lemma and critical minimization problems, preprint. | MR