@article{AIHPC_2002__19_6_889_0, author = {Taliaferro, Steven D.}, title = {Local behavior and global existence of positive solutions of $au^\lambda \le - \Delta u \le u^\lambda $}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {889--901}, publisher = {Elsevier}, volume = {19}, number = {6}, year = {2002}, zbl = {1039.35145}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2002__19_6_889_0/} }
TY - JOUR AU - Taliaferro, Steven D. TI - Local behavior and global existence of positive solutions of $au^\lambda \le - \Delta u \le u^\lambda $ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2002 SP - 889 EP - 901 VL - 19 IS - 6 PB - Elsevier UR - http://archive.numdam.org/item/AIHPC_2002__19_6_889_0/ LA - en ID - AIHPC_2002__19_6_889_0 ER -
%0 Journal Article %A Taliaferro, Steven D. %T Local behavior and global existence of positive solutions of $au^\lambda \le - \Delta u \le u^\lambda $ %J Annales de l'I.H.P. Analyse non linéaire %D 2002 %P 889-901 %V 19 %N 6 %I Elsevier %U http://archive.numdam.org/item/AIHPC_2002__19_6_889_0/ %G en %F AIHPC_2002__19_6_889_0
Taliaferro, Steven D. Local behavior and global existence of positive solutions of $au^\lambda \le - \Delta u \le u^\lambda $. Annales de l'I.H.P. Analyse non linéaire, Volume 19 (2002) no. 6, pp. 889-901. http://archive.numdam.org/item/AIHPC_2002__19_6_889_0/
[1] Estimates of the conformal scalar curvature equation via the method of moving planes, Comm. Pure Appl. Math. 50 (1997) 971-1017. | MR | Zbl
, ,[2] Further studies of Emden's and similar differential equations, Quart. J. Math. Oxford Ser. 2 (1931) 259-288. | Zbl
,[3] Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981) 525-598. | MR | Zbl
, ,[4] Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math. 123 (1996) 221-231. | MR | Zbl
,[5] On the number of constant scalar curvature metrics in a conformal class, in: , (Eds.), Differential Geometry: A Symposium in Honor of Manfredo Do Carmo, Wiley, New York, 1991, pp. 311-320. | MR | Zbl
,[6] J. Serrin, H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Preprint. | MR
[7] On the growth of superharmonic functions near an isolated singularity I, J. Differential Equations 158 (1999) 28-47. | MR | Zbl
,[8] On the growth of superharmonic functions near an isolated singularity II, Comm. Partial Differential Equations 26 (2001) 1003-1026. | MR | Zbl
,[9] Isolated singularities of nonlinear elliptic inequalities, Indiana Univ. Math. J. 50 (2001) 1885-1897. | MR | Zbl
,[10] Singular solutions of some nonlinear elliptic equations, Nonlinear Anal. 5 (1981) 225-242. | MR | Zbl
,