Multi-bump type nodal solutions having a prescribed number of nodal domains : I
Annales de l'I.H.P. Analyse non linéaire, Volume 22 (2005) no. 5, pp. 597-608.
@article{AIHPC_2005__22_5_597_0,
     author = {Liu, Zhaoli and Wang, Zhi-Qiang},
     title = {Multi-bump type nodal solutions having a prescribed number of nodal domains : {I}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {597--608},
     publisher = {Elsevier},
     volume = {22},
     number = {5},
     year = {2005},
     doi = {10.1016/j.anihpc.2004.10.002},
     zbl = {1130.35054},
     mrnumber = {2171993},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2004.10.002/}
}
TY  - JOUR
AU  - Liu, Zhaoli
AU  - Wang, Zhi-Qiang
TI  - Multi-bump type nodal solutions having a prescribed number of nodal domains : I
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2005
DA  - 2005///
SP  - 597
EP  - 608
VL  - 22
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2004.10.002/
UR  - https://zbmath.org/?q=an%3A1130.35054
UR  - https://www.ams.org/mathscinet-getitem?mr=2171993
UR  - https://doi.org/10.1016/j.anihpc.2004.10.002
DO  - 10.1016/j.anihpc.2004.10.002
LA  - en
ID  - AIHPC_2005__22_5_597_0
ER  - 
%0 Journal Article
%A Liu, Zhaoli
%A Wang, Zhi-Qiang
%T Multi-bump type nodal solutions having a prescribed number of nodal domains : I
%J Annales de l'I.H.P. Analyse non linéaire
%D 2005
%P 597-608
%V 22
%N 5
%I Elsevier
%U https://doi.org/10.1016/j.anihpc.2004.10.002
%R 10.1016/j.anihpc.2004.10.002
%G en
%F AIHPC_2005__22_5_597_0
Liu, Zhaoli; Wang, Zhi-Qiang. Multi-bump type nodal solutions having a prescribed number of nodal domains : I. Annales de l'I.H.P. Analyse non linéaire, Volume 22 (2005) no. 5, pp. 597-608. doi : 10.1016/j.anihpc.2004.10.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2004.10.002/

[1] N. Ackermann, T. Weth, Multibump solutions to nonlinear periodic Schrödinger equations in a degenerate setting, Comm. Contemp. Math., submitted for publication. | MR | Zbl

[2] Bartsch T., Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal. 186 (2001) 117-152. | MR | Zbl

[3] Bartsch T., Chang K.C., Wang Z.-Q., On the Morse indices of sign-changing solutions for nonlinear elliptic problems, Math. Z. 233 (2000) 655-677. | MR | Zbl

[4] Bartsch T., Liu Z.L., Weth T., Sign changing solutions of superlinear Schrödinger equations, Comm. Partial Differential Equations 29 (2004) 25-42. | MR | Zbl

[5] Bartsch T., Wang Z.-Q., On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal. 7 (1996) 115-131. | MR | Zbl

[6] Brezis H., Nirenberg L., H 1 versus C 1 local minimizers, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993) 465-472. | MR | Zbl

[7] Castro A., Cossio J., Neuberger J., A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math. 27 (1997) 1041-1053. | MR | Zbl

[8] Chang K.C., Infinite Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl., vol. 6, Birkhäuser, Boston, 1993. | MR | Zbl

[9] Chang K.C., H 1 versus C 1 isolated critical points, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 441-446. | MR | Zbl

[10] Coti Zelati V., Rabinowitz P.H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991) 627-693. | MR | Zbl

[11] Coti Zelati V., Rabinowitz P.H., Homoclinic type solutions for a semilinear elliptic PDE on R n , Comm. Pure Appl. Math. 45 (1992) 1217-1269. | MR | Zbl

[12] Dancer E.N., Du Y., On sign-changing solutions of certain semilinear elliptic problems, Appl. Anal. 56 (1995) 193-206. | MR | Zbl

[13] Dancer E.N., Yan S., A singularly perturbed elliptic problem in bounded domains with nontrivial topology, Adv. Differential Equations 4 (1999) 347-368. | MR | Zbl

[14] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of the Second Order, Springer-Verlag, Berlin, 1983. | MR | Zbl

[15] Li S.J., Wang Z.-Q., Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems, J. Analyse Math. 81 (2000) 373-396. | MR | Zbl

[16] Li S.J., Wang Z.-Q., Ljusternik-Schnirelman theory in partially ordered Hilbert spaces, Trans. Amer. Math. Soc. 354 (2002) 3207-3227. | MR | Zbl

[17] Liu Z.L., Sun J.X., Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differential Equations 172 (2001) 257-299. | MR | Zbl

[18] Liu Z.L., Wang Z.-Q., Multi-bump type nodal solutions having a prescribed number of nodal domains: II, Ann. I. H. Poincaré - AN 22 (2005) 609-631. | Numdam | MR | Zbl

[19] Rabinowitz P.H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986. | MR | Zbl

[20] Rabinowitz P.H., A variational approach to multibump solutions of differential equations, in: Contemp. Math., vol. 198, Amer. Math. Soc., Providence, RI, 1996, pp. 31-43. | MR | Zbl

[21] Rabinowitz P.H., Multibump solutions of differential equations: an overview, Chinese J. Math. 24 (1996) 1-36. | MR | Zbl

[22] Séré E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z. 209 (1992) 27-42. | MR | Zbl

Cited by Sources: