Motivated by transverse stability issues, we address the time evolution under the KP-II flow of perturbations of a solution which does not decay in all directions, for instance the KdV-line soliton. We study two different types of perturbations: perturbations that are square integrable in and perturbations that are square integrable in . In both cases we prove the global well-posedness of the Cauchy problem associated with such initial data.
@article{AIHPC_2011__28_5_653_0, author = {Molinet, Luc and Saut, Jean-Claude and Tzvetkov, Nikolay}, title = {Global well-posedness for the {KP-II} equation on the background of a non-localized solution}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {653--676}, publisher = {Elsevier}, volume = {28}, number = {5}, year = {2011}, doi = {10.1016/j.anihpc.2011.04.004}, mrnumber = {2838395}, zbl = {1279.35079}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2011.04.004/} }
TY - JOUR AU - Molinet, Luc AU - Saut, Jean-Claude AU - Tzvetkov, Nikolay TI - Global well-posedness for the KP-II equation on the background of a non-localized solution JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 653 EP - 676 VL - 28 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2011.04.004/ DO - 10.1016/j.anihpc.2011.04.004 LA - en ID - AIHPC_2011__28_5_653_0 ER -
%0 Journal Article %A Molinet, Luc %A Saut, Jean-Claude %A Tzvetkov, Nikolay %T Global well-posedness for the KP-II equation on the background of a non-localized solution %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 653-676 %V 28 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2011.04.004/ %R 10.1016/j.anihpc.2011.04.004 %G en %F AIHPC_2011__28_5_653_0
Molinet, Luc; Saut, Jean-Claude; Tzvetkov, Nikolay. Global well-posedness for the KP-II equation on the background of a non-localized solution. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 5, pp. 653-676. doi : 10.1016/j.anihpc.2011.04.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2011.04.004/
[1] The Cauchy problem for the Kadomtsev–Petviashvili II equation with non-decaying data along a line, Stud. Appl. Math. 109 (2002), 151-162 | MR | Zbl
, ,[2] The Cauchy problem for the Kadomtsev–Petviashvili II equation with data that do not decay along a line, Nonlinearity 17 (2004), 1843-1866 | MR | Zbl
, ,[3] Solitary waves of the generalized KP equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 no. 2 (1997), 211-236 | EuDML | Numdam | MR | Zbl
, ,[4] On the Cauchy problem for the Kadomtsev–Petviashvili equation, GAFA 3 (1993), 315-341 | EuDML | MR | Zbl
,[5] Solitons: An Introduction, Cambridge Texts Appl. Math., Cambridge Univ. Press, Cambridge (1989) | MR | Zbl
, ,[6] Inverse scattering transform for the KP-I equation on the background of a one-line soliton, Nonlinearity 16 (2003), 771-783 | MR
, ,[7] Le problème de Cauchy pour des EDP semi linéaires périodiques en variables dʼespaces, Sém. Bourbaki (1994–1995), 163-187 | EuDML | Numdam
,[8] On KP II equations on cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 6 (2009), 2335-2358 | EuDML | Numdam | MR | Zbl
, , ,[9] Well-posedness for the Kadomtsev (KP II) equation and generalizations, Trans. Amer. Math. Soc. 360 (2008), 6555-6572 | MR | Zbl
,[10] Well-posedness and scattering for the KP II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 3 (2009), 917-941 | EuDML | Numdam | MR | Zbl
, , ,[11] Global well-posedness of the initial value problem for the KP I equation in the energy space, Invent. Math. 173 no. 2 (2008), 265-304 | MR | Zbl
, , ,[12] Local and global Cauchy problems for the Kadomtsev–Petviashvili (KP-II) equation in Sobolev spaces of negative indices, Comm. Partial Differential Equations 26 (2001), 1027-1057 | MR | Zbl
, ,[13] On the stability of solitary waves in weakly dispersive media, Soviet Phys. Dokl. 15 no. 6 (1970), 539-541 | Zbl
, ,[14] On the local and global well-posedness for the KP-I equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 827-838 | EuDML | Numdam | MR | Zbl
,[15] Stability of the line soliton of the KP II equation under periodic transverse perturbations, arXiv:1008.0812v1 | MR | Zbl
, ,[16] On the asymptotic behavior of solutions to the (generalized) Kadomtsev–Petviashvili–Burgers equation, J. Differential Equations 152 (1999), 30-74 | MR | Zbl
,[17] Global well-posedness for the KP-I equation, Math. Ann. 324 (2002), 255-275, Math. Ann. 328 (2004), 707-710 | MR | Zbl
, , ,[18] Global well-posedness of the KP-I equation on the background of a non localized solution, Comm. Math. Phys. 272 (2007), 775-810 | MR | Zbl
, , ,[19] Theory of Solitons. The Inverse Scattering Method, Contemp. Soviet Math., Consultants Bureau, New York, London (1984) | MR | Zbl
, , , ,[20] Transverse instability for two-dimensional dispersive models, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 477-496 | EuDML | Numdam | MR | Zbl
, ,[21] Transverse nonlinear instability for some Hamiltonian PDEʼs, J. Math. Pures Appl. 90 (2008), 550-590 | MR | Zbl
, ,[22] N-soliton of the two-dimensional Korteweg–de Vries equation, J. Phys. Soc. Japan 40 (1976), 286-290 | MR | Zbl
,[23] Remarks on the generalized Kadomtsev–Petviashvili equations, Indiana Univ. Math. J. 42 (1993), 1017-1029 | MR
,[24] On the periodic KP-I type equations, Comm. Math. Phys. 221 (2001), 451-476 | MR | Zbl
, ,[25] The Cauchy problem for higher order KP equations, J. Differential Equations 153 no. 1 (1999), 196-222 | MR | Zbl
, ,[26] The Cauchy problem for the fifth order KP equation, J. Math. Pures Appl. 79 no. 4 (2000), 307-338 | MR | Zbl
, ,[27] Global well-posedness for the Kadomtsev–Petviashvili II equation, Discrete Contin. Dyn. Syst. 6 (2000), 483-499 | MR | Zbl
,[28] On the local regularity of Kadomtsev–Petviashvili-II equation, IMRN 8 (2001), 77-114 | MR | Zbl
, ,[29] Global low regularity solutions for Kadomtsev–Petviashvili equation, Differential Integral Equations 13 (2000), 1289-1320 | MR | Zbl
,[30] Instability and nonlinear oscillations of solitons, JETP Lett. 22 (1975), 172-173
,[31] Inverse scattering transform for the time dependent Schrödinger equation with applications to the KP-I equation, Comm. Math. Phys. 128 (1990), 551-564 | MR | Zbl
,Cité par Sources :