Existence of self-dual non-topological solutions in the Chern–Simons Higgs model
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 6, pp. 837-852.

Lʼobjectif de cet article est de prouver lʼexistence de solutions non-topologiques du modèle de Chern–Simons Higgs dans 2. Un problème de longue date existe pour cette équation : Soit N points vortex et β>8π(N+1), existe-t-il une solution non-topologique dans 2 telle que le flux magnétique total est égal à β/2 ? Dans cet article, nous prouvons lʼexistence dʼune solution pour β{8πNkk-1|k=2,,N}. Nous appliquons lʼanalyse par bulles et la theorie de Leray–Schauder pour résoudre ce problème.

In this paper we investigate the existence of non-topological solutions of the Chern–Simons Higgs model in 2. A long standing problem for this equation is: Given N vortex points and β>8π(N+1), does there exist a non-topological solution in 2 such that the total magnetic flux is equal to β/2? In this paper, we prove the existence of such a solution if β{8πNkk-1|k=2,,N}. We apply the bubbling analysis and the Leray–Schauder degree theory to solve this problem.

DOI : 10.1016/j.anihpc.2011.06.003
Mots-clés : Semi-linear PDE, Non-topological vortices, Chern–Simons Higgs model
@article{AIHPC_2011__28_6_837_0,
     author = {Choe, Kwangseok and Kim, Namkwon and Lin, Chang-Shou},
     title = {Existence of self-dual non-topological solutions in the {Chern{\textendash}Simons} {Higgs} model},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {837--852},
     publisher = {Elsevier},
     volume = {28},
     number = {6},
     year = {2011},
     doi = {10.1016/j.anihpc.2011.06.003},
     mrnumber = {2859930},
     zbl = {1232.81031},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2011.06.003/}
}
TY  - JOUR
AU  - Choe, Kwangseok
AU  - Kim, Namkwon
AU  - Lin, Chang-Shou
TI  - Existence of self-dual non-topological solutions in the Chern–Simons Higgs model
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2011
SP  - 837
EP  - 852
VL  - 28
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2011.06.003/
DO  - 10.1016/j.anihpc.2011.06.003
LA  - en
ID  - AIHPC_2011__28_6_837_0
ER  - 
%0 Journal Article
%A Choe, Kwangseok
%A Kim, Namkwon
%A Lin, Chang-Shou
%T Existence of self-dual non-topological solutions in the Chern–Simons Higgs model
%J Annales de l'I.H.P. Analyse non linéaire
%D 2011
%P 837-852
%V 28
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2011.06.003/
%R 10.1016/j.anihpc.2011.06.003
%G en
%F AIHPC_2011__28_6_837_0
Choe, Kwangseok; Kim, Namkwon; Lin, Chang-Shou. Existence of self-dual non-topological solutions in the Chern–Simons Higgs model. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 6, pp. 837-852. doi : 10.1016/j.anihpc.2011.06.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2011.06.003/

[1] D. Bartolucci, C.-C. Chen, C.-S. Lin, G. Tarantello, Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations 29 (2004), 1241-1265 | MR | Zbl

[2] L.A. Caffarelli, Y. Yang, Vortex condensation in the Chern–Simons–Higgs model: An existence theorem, Comm. Math. Phys. 168 (1995), 321-336 | MR | Zbl

[3] D. Chae, O.Y. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory, Comm. Math. Phys. 215 (2000), 119-142 | MR | Zbl

[4] H. Chan, C.-C. Fu, C.-S. Lin, Non-topological multi-vortex solutions to the self-dual Chern–Simons–Higgs equation, Comm. Math. Phys. 231 (2002), 189-221 | MR | Zbl

[5] C.-C. Chen, C.-S. Lin, Mean field equations of Liouville type with singular data: Sharper estimates, Discrete Contin. Dyn. Syst. 28 (2010), 1667-1727 | MR

[6] X. Chen, S. Hastings, J.B. Mcleod, Y. Yang, A nonlinear elliptic equation arising from gauge theory and cosmology, Proc. R. Soc. Lond. A 446 (1994), 453-478 | MR | Zbl

[7] K. Choe, Asymptotic behavior of condensate solutions in the Chern–Simons–Higgs theory, J. Math. Phys. 48 (2007), 103501 | MR | Zbl

[8] K. Choe, Multiple existence results for the self-dual Chern–Simons–Higgs vortex equation, Comm. Partial Differential Equations 34 (2009), 1465-1507 | MR | Zbl

[9] K. Choe, N. Kim, Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), 313-338 | EuDML | Numdam | MR | Zbl

[10] G. Dunne, Self-Dual Chern–Simons Theories, Springer Lecture Note Physics vol. M36, Springer, Berlin (1995) | Zbl

[11] J. Hong, Y. Kim, P.Y. Pac, Multivortex solutions of the abelian Chern–Simons–Higgs theory, Phys. Rev. Lett. 64 (1990), 2230-2233 | MR | Zbl

[12] R. Jackiw, E.J. Weinberg, Self-dual Chern–Simons vortices, Phys. Rev. Lett. 64 (1990), 2234-2237 | MR | Zbl

[13] A. Jaffe, C.H. Taubes, Vortices and Monopoles, Birkhäuser, Boston (1980) | MR | Zbl

[14] N. Kim, Existence of vortices in a self-dual gauged linear sigma model and its singular limit, Nonlinearity 19 (2006), 721-739 | MR | Zbl

[15] B.H. Lee, C. Lee, H. Min, Supersymmetric Chern–Simons vortex systems and fermion zero modes, Phys. Rev. D 45 (1992), 4588-4599 | MR

[16] C. Lee, K. Lee, E.J. Weinberg, Supersymmetry and self-dual Chern–Simons systems, Phys. Lett. B 243 (1990), 105-108 | MR

[17] C.-S. Lin, C.L. Wang, Elliptic functions, Green functions and the mean field equations on tori, Ann. Math. II 172 (2010), 911-954 | MR | Zbl

[18] C.-S. Lin, S. Yan, Bubbling solutions for relativistic Abelian Chern–Simons model on a torus, Comm. Math. Phys. 297 (2010), 733-758 | MR | Zbl

[19] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Lecture Notes in Mathematics, American Mathematics Society, Rhode Island (2001) | MR

[20] M. Nolasco, G. Tarantello, Double vortex condensates in the Chern–Simons–Higgs theory, Calc. Var. Partial Differential Equations 9 (1999), 31-94 | MR | Zbl

[21] J. Spruck, Y. Yang, The existence of nontopological solitons in the self-dual Chern–Simons theory, Comm. Math. Phys. 149 (1992), 361-376 | MR | Zbl

[22] J. Spruck, Y. Yang, Topological solutions in the self-dual Chern–Simons theory: Existence and approximation, Ann. Inst. Henri Poincaré 12 (1995), 75-97 | EuDML | Numdam | MR | Zbl

[23] G. Tarantello, Multiple condensate solutions for the Chern–Simons–Higgs theory, J. Math. Phys. 37 (1996), 3769-3796 | MR | Zbl

[24] G. Tarantello, Selfdual Gauge Field Vortices: An Analytical Approach, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston (2008) | MR

[25] Y. Yang, Solutions in Field-Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York (2001) | MR

[26] R. Wang, The existence of Chern–Simons vortices, Comm. Math. Phys. 137 (1991), 587-597 | MR | Zbl

[27] Z. Wang, Symmetries and the calculations of degree, Chin. Ann. of Math. B 16 (1989), 520-536 | MR | Zbl

Cité par Sources :