The evolution of H-surfaces with a Plateau boundary condition
Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 1, p. 109-157
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

In this paper we consider the heat flow associated to the classical Plateau problem for surfaces of prescribed mean curvature. To be precise, for a given Jordan curve Γ 3 , a given prescribed mean curvature function H: 3 and an initial datum u o :B 3 satisfying the Plateau boundary condition, i.e. that u o | B :BΓ is a homeomorphism, we consider the geometric flow t u-Δu=-2(Hu)D 1 u×D 2 uinB×(0,), u(·,0)=u o onB,u(·,t)| B :BΓisweaklymonotoneforallt>0. We show that an isoperimetric condition on H ensures the existence of a global weak solution. Moreover, we establish that these global solutions sub-converge as t to a conformal solution of the classical Plateau problem for surfaces of prescribed mean curvature.

@article{AIHPC_2015__32_1_109_0,
     author = {Duzaar, Frank and Scheven, Christoph},
     title = {The evolution of H-surfaces with a Plateau boundary condition},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {32},
     number = {1},
     year = {2015},
     pages = {109-157},
     doi = {10.1016/j.anihpc.2013.10.003},
     zbl = {1328.53083},
     mrnumber = {3303944},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2015__32_1_109_0}
}
Duzaar, Frank; Scheven, Christoph. The evolution of H-surfaces with a Plateau boundary condition. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 1, pp. 109-157. doi : 10.1016/j.anihpc.2013.10.003. http://www.numdam.org/item/AIHPC_2015__32_1_109_0/

[1] E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J. 136 no. 2 (2007), 285 -320 | MR 2286632 | Zbl 1113.35105

[2] F. Duzaar, G. Mingione, Second order parabolic systems, optimal regularity, and singular sets of solutions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 705 -751 | Numdam | MR 2172857 | Zbl 1099.35042

[3] V. Bögelein, F. Duzaar, C. Scheven, Weak solutions to the heat flow for surfaces of prescribed mean curvature, Trans. Amer. Math. Soc. 365 (2013), 4633 -4677 | MR 3066767 | Zbl 1293.53009

[4] V. Bögelein, F. Duzaar, C. Scheven, Global solutions to the heat flow for m-harmonic maps and regularity, Indiana Univ. Math. J. 61 no. 6 (2012), 2157 -2210 | MR 3129107 | Zbl 1295.58006

[5] L.A. Caffarelli, I. Peral, On W 1,p estimates for elliptic equations in divergence form, Commun. Pure Appl. Math. 51 no. 1 (1998), 1 -21 | Zbl 0906.35030

[6] K. Chang, J. Liu, Heat flow for the minimal surface with Plateau boundary condition, Acta Math. Sin. Engl. Ser. 19 no. 1 (2003), 1 -28 | MR 1968464 | Zbl 1137.53336

[7] K. Chang, J. Liu, Another approach to the heat flow for Plateau problem, J. Differ. Equ. 189 (2003), 46 -70 | MR 1968314 | Zbl 1171.53329

[8] K. Chang, J. Liu, An evolution of minimal surfaces with Plateau condition, Calc. Var. Partial Differ. Equ. 19 (2004), 117 -163 | MR 2034577 | Zbl 1118.53005

[9] Y. Chen, S. Levine, The existence of the heat flow of H-systems, Discrete Contin. Dyn. Syst. 8 no. 1 (2002), 219 -236 | MR 1877837 | Zbl 1136.35403

[10] U. Dierkes, S. Hildebrandt, A. Küster, O. Wohlrab, Minimal Surfaces, vols. I and II, Grundlehren Math. Wiss. vols. 295 and 296 , Springer (1992) | MR 1215268

[11] F. Duzaar, J. Grotowski, Existence and regularity for higher dimensional H-systems, Duke Math. J. 101 no. 3 (2000), 459 -485 | MR 1740684 | Zbl 0959.35050

[12] F. Duzaar, K. Steffen, Existence of hypersurfaces with prescribed mean curvature in Riemannian manifolds, Indiana Univ. Math. J. 45 (1996), 1045 -1093 | MR 1444478 | Zbl 0880.53049

[13] F. Duzaar, K. Steffen, Parametric surfaces of least H-energy in a Riemannian manifold, Math. Ann. 314 (1999), 197 -244 | MR 1697443 | Zbl 0953.53007

[14] L. Evans, R. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math. , CRC Press, Boca Raton, FL (1992) | MR 1158660 | Zbl 0804.28001

[15] H. Federer, Geometric Measure Theory, Springer, Berlin (1969) | MR 257325 | Zbl 0176.00801

[16] R. Gulliver, J. Spruck, The Plateau problem for surfaces of prescribed mean curvature in a cylinder, Invent. Math. 13 (1971), 169 -178 | MR 298515 | Zbl 0214.11103

[17] R. Gulliver, J. Spruck, Existence theorems for parametric surfaces of prescribed mean curvature, Indiana Univ. Math. J. 22 (1972), 445 -472 | MR 308904 | Zbl 0233.53004

[18] J. Haga, K. Hoshino, N. Kikuchi, Construction of harmonic map flows through the method of discrete Morse flows, Comput. Vis. Sci. 7 (2004), 53 -59 | MR 2065958 | Zbl 1120.53304

[19] E. Heinz, Über die Existenz einer Fläche konstanter mittlerer Krümmung mit gegebener Berandung, Math. Ann. 137 (1954), 258 -287 | MR 70013 | Zbl 0055.15303

[20] E. Heinz, F. Tomi, Zu einem Satz von Hildebrandt über das Randverhalten von Minimalflächen, Math. Z. 111 (1969), 372 -386 | MR 266066 | Zbl 0172.38601

[21] S. Hildebrandt, Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmung und Anwendungen auf die Kapillaritätstheorie I, Math. Z. 112 (1969), 205 -213 | MR 250208 | Zbl 0175.40403

[22] S. Hildebrandt, Einige Bemerkungen über Flächen vorgeschriebener mittlerer Krümmung, Math. Z. 115 (1970), 169 -178 | MR 266115 | Zbl 0185.50201

[23] S. Hildebrandt, H. Kaul, Two-dimensional variational problems with obstructions, and Plateau's problem for H-surfaces in a Riemannian manifold, Commun. Pure Appl. Math. 25 (1972), 187 -223 | MR 296829 | Zbl 0245.53006

[24] M. Hong, D. Hsu, The heat flow for H-systems on higher dimensional manifolds, Indiana Univ. Math. J. 59 no. 3 (2010), 761 -789 | MR 2779060 | Zbl 1210.53065

[25] C. Imbusch, M. Struwe, Variational principles for minimal surfaces, Topics in Nonlinear Analysis, Prog. Nonlinear Differ. Equ. Appl. vol. 35 , Birkäuser, Basel (1999), 477 -498 | MR 1725580 | Zbl 0921.35046

[26] N. Kikuchi, An approach to the construction of Morse flows for variational functionals, Nematics, Orsay, 1990, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. vol. 332 , Kluwer Acad. Publ., Dodrecht (1991), 195 -199 | MR 1178095 | Zbl 0850.76043

[27] C. Leone, M. Misawa, A. Verde, A global existence result for the heat flow of higher dimensional H-systems, J. Math. Pures Appl. 97 no. 3 (2012), 282 -294 | MR 2887626 | Zbl 1241.35053

[28] G. Mingione, The Calderón–Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6 no. 2 (2007), 195 -261 | Numdam | MR 2352517 | Zbl 1178.35168

[29] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, New York (1966) | MR 202511 | Zbl 0142.38701

[30] R. Moser, Weak solutions of a biharmonic map heat flow, Adv. Calc. Var. 2 (2009), 73 -92 | MR 2494507 | Zbl 1165.58008

[31] F. Müller, A. Schikorra, Boundary regularity via Uhlenbeck–Rivière decomposition, Analysis 29 (2010), 199 -220 | MR 2554638 | Zbl 1181.35102

[32] L. Nirenberg, An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3) 20 (1966), 733 -737 | Numdam | MR 208360 | Zbl 0163.29905

[33] O. Rey, Heat flow for the equation of surfaces with prescribed mean curvature, Math. Ann. 293 (1991), 123 -146 | MR 1125012 | Zbl 0761.58052

[34] T. Rivière, Conservation laws for conformally invariant variational problems, Invent. Math. 168 (2007), 1 -22 | MR 2285745 | Zbl 1128.58010

[35] J. Simon, Compact sets in the space L p (0,T;B) , Ann. Mat. Pura Appl. (4) 146 (1987), 65 -96 | MR 916688 | Zbl 0629.46031

[36] C. Scheven, Partial regularity for stationary harmonic maps at a free boundary, Math. Z. 253 no. 1 (2006), 135 -157 | MR 2206640 | Zbl 1092.53050

[37] L. Simon, Lectures on Geometric Measure Theory, Proc. Centre Math. Anal., Aust. Natl. Univ. vol. 3 , Australian National Univ. (1983) | MR 756417 | Zbl 0546.49019

[38] K. Steffen, Isoperimetric inequalities and the problem of Plateau, Math. Ann. 222 (1976), 97 -144 | MR 417903 | Zbl 0345.49024

[39] K. Steffen, On the existence of surfaces with prescribed mean curvature and boundary, Math. Z. 146 (1976), 113 -135 | MR 394394 | Zbl 0343.49016

[40] K. Steffen, H. Wente, The nonexistence of branch points in solutions to certain classes of Plateau-type variational problems, Math. Z. 163 no. 3 (1978), 211 -238 | MR 513728 | Zbl 0404.49037

[41] M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), 558 -581 | MR 826871 | Zbl 0595.58013

[42] M. Struwe, The existence of surfaces of constant mean curvature with free boundaries, Acta Math. 160 (1988), 19 -64 | MR 926524 | Zbl 0646.53005

[43] M. Struwe, Plateau's Problem and the Calculus of Variations, Math. Notes vol. 35 , Princeton University Press, Princeton, NJ (1988) | MR 992402 | Zbl 0694.49028

[44] F. Tomi, Ein einfacher Beweis eines Regularitätssatzes für schwache Lösungen gewisser elliptischer Systeme, Math. Z. 112 (1969), 214 -218 | MR 257549 | Zbl 0177.14704

[45] H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318 -344 | MR 243467 | Zbl 0181.11501