This paper is concerned with the cubic Szegő equation
Mots-clés : Cubic Szegő equation, Gevrey class regularity, Analytic solutions, Hankel operators
@article{AIHPC_2015__32_1_97_0, author = {G\'erard, Patrick and Guo, Yanqiu and Titi, Edriss S.}, title = {On the radius of analyticity of solutions to the cubic {Szeg\H{o}} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {97--108}, publisher = {Elsevier}, volume = {32}, number = {1}, year = {2015}, doi = {10.1016/j.anihpc.2013.11.001}, mrnumber = {3303943}, zbl = {1332.35058}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2013.11.001/} }
TY - JOUR AU - Gérard, Patrick AU - Guo, Yanqiu AU - Titi, Edriss S. TI - On the radius of analyticity of solutions to the cubic Szegő equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 97 EP - 108 VL - 32 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2013.11.001/ DO - 10.1016/j.anihpc.2013.11.001 LA - en ID - AIHPC_2015__32_1_97_0 ER -
%0 Journal Article %A Gérard, Patrick %A Guo, Yanqiu %A Titi, Edriss S. %T On the radius of analyticity of solutions to the cubic Szegő equation %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 97-108 %V 32 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2013.11.001/ %R 10.1016/j.anihpc.2013.11.001 %G en %F AIHPC_2015__32_1_97_0
Gérard, Patrick; Guo, Yanqiu; Titi, Edriss S. On the radius of analyticity of solutions to the cubic Szegő equation. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 1, pp. 97-108. doi : 10.1016/j.anihpc.2013.11.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2013.11.001/
[1] An instability property of the nonlinear Schrödinger equation on , Math. Res. Lett. 9 no. 2–3 (2002), 323 -335 | MR | Zbl
, , ,[2] Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math. 159 no. 1 (2005), 187 -223 | MR | Zbl
, , ,[3] A Course in Operator Theory, Grad. Stud. Math. vol. 21 , American Mathematical Society, Providence, RI (2000) | MR
,[4] Gevrey regularity for nonlinear analytic parabolic equations, Commun. Partial Differ. Equ. 23 (1998), 1 -16 | Zbl
, ,[5] Gevrey class regularity for the solutions of the Navier–Stokes equations, J. Funct. Anal. 87 (1989), 359 -369 | MR | Zbl
, ,[6] The cubic Szegő equation, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), 761 -810 | EuDML | Numdam | MR | Zbl
, ,[7] Invariant tori for the cubic Szegő equation, Invent. Math. 187 no. 3 (2012), 707 -754 | MR | Zbl
, ,[8] An explicit formula for the cubic Szegő equation, arXiv:1304.2619 (2013) | MR
, ,[9] Persistency of analyticity for nonlinear wave equations: an energy-like approach, Bull. Inst. Math. Acad. Sin. (N. S.) 8 no. 4 (2013), 445 -479 | MR | Zbl
, ,[10] On the radius of analyticity of solutions to the three-dimensional Euler equations, Proc. Am. Math. Soc. 137 (2009), 669 -677 | MR | Zbl
, ,[11] Oscillations in space-periodic nonlinear Schrödinger equations, Geom. Funct. Anal. 2 (1997), 338 -363 | MR | Zbl
,[12] On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models, Discrete Contin. Dyn. Syst., Ser. B 14 (2010), 603 -627 | MR | Zbl
, ,[13] Analyticity of solutions for a generalized Euler equation, J. Differ. Equ. 133 (1997), 321 -339 | MR | Zbl
, ,[14] Remarks on nonlinear smoothing under randomization for the periodic KdV and the cubic Szegő equation, Funkc. Ekvacioj 54 no. 3 (2011), 335 -365 | MR | Zbl
,[15] Remark on the rate of decay of higher order derivatives for solutions to the Navier–Stokes equations in , J. Funct. Anal. 172 (2000), 1 -18 | MR | Zbl
, ,[16] On the domain of analyticity for solutions of second order analytic nonlinear differential equations, J. Differ. Equ. 174 (2001), 55 -74 | MR | Zbl
, ,[17] Hankel operators of class and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Math. USSR Sb. 41 (1982), 443 -479 | MR | Zbl
,[18] Hankel Operators and Their Applications, Springer Monogr. Math. , Springer-Verlag, New York (2003) | MR | Zbl
,[19] Explicit formula for the solution of the Szegő equation on the real line and applications, Discrete Contin. Dyn. Syst. 31 no. 3 (2011), 607 -649 | MR | Zbl
,[20] Traveling waves for the cubic Szegő equation on the real line, Anal. PDE 4 no. 3 (2011), 379 -404 | MR | Zbl
,[21] Large time blow up for a perturbation of the cubic Szegő equation, arXiv:1307.5284 (2013) | MR
,Cité par Sources :