We establish regularity for functions satisfying a dynamic programming equation, which may arise for example from stochastic games or discretization schemes. Our results can also be utilized in obtaining regularity and existence results for the corresponding partial differential equations.
Mots-clés : Dynamic programming principle, p-Laplace, Tug-of-war, Tug-of-war with noise with space dependent probabilities, Viscosity solutions
@article{AIHPC_2018__35_6_1435_0, author = {Luiro, Hannes and Parviainen, Mikko}, title = {Regularity for nonlinear stochastic games}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1435--1456}, publisher = {Elsevier}, volume = {35}, number = {6}, year = {2018}, doi = {10.1016/j.anihpc.2017.11.009}, mrnumber = {3846232}, zbl = {1398.91058}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.009/} }
TY - JOUR AU - Luiro, Hannes AU - Parviainen, Mikko TI - Regularity for nonlinear stochastic games JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1435 EP - 1456 VL - 35 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.009/ DO - 10.1016/j.anihpc.2017.11.009 LA - en ID - AIHPC_2018__35_6_1435_0 ER -
%0 Journal Article %A Luiro, Hannes %A Parviainen, Mikko %T Regularity for nonlinear stochastic games %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1435-1456 %V 35 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.009/ %R 10.1016/j.anihpc.2017.11.009 %G en %F AIHPC_2018__35_6_1435_0
Luiro, Hannes; Parviainen, Mikko. Regularity for nonlinear stochastic games. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1435-1456. doi : 10.1016/j.anihpc.2017.11.009. http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.009/
[1] A stochastic differential game for the inhomogeneous ∞-Laplace equation, Ann. Probab., Volume 38 (2010) no. 2, pp. 498–531 | DOI | MR | Zbl
[2] Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition, Commun. Partial Differ. Equ., Volume 37 (2012) no. 10, pp. 1839–1869 | DOI | MR | Zbl
[3] Non-local gradient dependent operators, Adv. Math., Volume 230 (2012) no. 4–6, pp. 1859–1894 | MR | Zbl
[4] Nonlocal tug-of-war and the infinity fractional Laplacian, Commun. Pure Appl. Math., Volume 65 (2012) no. 3, pp. 337–380 | DOI | MR | Zbl
[5] A dynamic programming principle with continuous solutions related to the p-Laplacian, Differ. Integral Equ., Volume 29 (2016) no. 5–6, pp. 583–600 | MR | Zbl
[6] Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differ. Equ., Volume 83 (1990) no. 1, pp. 26–78 | DOI | MR | Zbl
[7] Equivalence of viscosity and weak solutions for the -Laplacian, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 27 (2010) no. 6, pp. 1471–1487 | Numdam | MR | Zbl
[8] Generalized Harnack inequality for nonhomogeneous elliptic equations, Arch. Ration. Mech. Anal., Volume 216 (2015) no. 2, pp. 673–702 | DOI | MR | Zbl
[9] Solutions of nonlinear PDEs in the sense of averages, J. Math. Pures Appl. (9), Volume 97 (2012) no. 2, pp. 173–188 | DOI | MR | Zbl
[10] Hölder continuity and bounds for fundamental solutions to nondivergence form parabolic equations, Anal. PDE, Volume 8 (2015) no. 1, pp. 1–32 | DOI | MR | Zbl
[11] Coupling of multidimensional diffusions by reflection, Ann. Probab., Volume 14 (1986) no. 3, pp. 860–872 | DOI | MR | Zbl
[12] Harnack's inequality for p-harmonic functions via stochastic games, Commun. Partial Differ. Equ., Volume 38 (2013) no. 11, pp. 1985–2003 | DOI | MR | Zbl
[13] On the existence and uniqueness of p-harmonious functions, Differ. Integral Equ., Volume 27 (2014) no. 3/4, pp. 201–216 | MR | Zbl
[14] General existence of solutions to dynamic programming equations, Commun. Pure Appl. Anal., Volume 14 (2015) no. 1, pp. 167–184 | MR
[15] An asymptotic mean value characterization for p-harmonic functions, Proc. Am. Math. Soc., Volume 258 (2010), pp. 713–728 | MR
[16] On the definition and properties of p-harmonious functions, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 11 (2012) no. 2, pp. 215–241 | Numdam | MR | Zbl
[17] A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions, Math. Comput., Volume 74 (2005) no. 251, pp. 1217–1230 | DOI | MR | Zbl
[18] Tug-of-war with noise: a game-theoretic view of the p-Laplacian, Duke Math. J., Volume 145 (2008) no. 1, pp. 91–120 | DOI | MR | Zbl
[19] Tug-of-war and the infinity Laplacian, J. Am. Math. Soc., Volume 22 (2009) no. 1, pp. 167–210 | DOI | MR | Zbl
[20] Global Lipschitz regularizing effects for linear and nonlinear parabolic equations, J. Math. Pures Appl. (9), Volume 100 (2013) no. 5, pp. 633–686 | DOI | MR | Zbl
[21] Gradient estimates for diffusion semigroups with singular coefficients, J. Funct. Anal., Volume 236 (2006) no. 1, pp. 244–264 | DOI | MR | Zbl
[22] Local regularity results for value functions of tug-of-war with noise and running payoff, Adv. Calc. Var., Volume 9 (2016) no. 1, pp. 1–17 | DOI | MR | Zbl
Cité par Sources :