Motivated by a recent conjecture of R. P. Stanley we offer a lower bound for the sum of the coefficients of a Schubert polynomial in terms of -pattern containment.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.27
@article{ALCO_2018__1_4_415_0, author = {Weigandt, Anna E.}, title = {Schubert polynomials, 132-patterns, and {Stanley{\textquoteright}s} conjecture}, journal = {Algebraic Combinatorics}, pages = {415--423}, publisher = {MathOA foundation}, volume = {1}, number = {4}, year = {2018}, doi = {10.5802/alco.27}, mrnumber = {3875071}, zbl = {1397.05205}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/alco.27/} }
TY - JOUR AU - Weigandt, Anna E. TI - Schubert polynomials, 132-patterns, and Stanley’s conjecture JO - Algebraic Combinatorics PY - 2018 SP - 415 EP - 423 VL - 1 IS - 4 PB - MathOA foundation UR - http://archive.numdam.org/articles/10.5802/alco.27/ DO - 10.5802/alco.27 LA - en ID - ALCO_2018__1_4_415_0 ER -
Weigandt, Anna E. Schubert polynomials, 132-patterns, and Stanley’s conjecture. Algebraic Combinatorics, Tome 1 (2018) no. 4, pp. 415-423. doi : 10.5802/alco.27. http://archive.numdam.org/articles/10.5802/alco.27/
[1] RC-graphs and Schubert polynomials, Exp. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | MR | Zbl
[2] Some combinatorial properties of Schubert polynomials, J. Algebr. Comb., Volume 2 (1993) no. 4, pp. 345-374 | DOI | MR | Zbl
[3] The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math., Volume 153 (1996) no. 1-3, pp. 123-143 | DOI | MR | Zbl
[4] Gröbner geometry of Schubert polynomials, Ann. Math. (2005), pp. 1245-1318 | DOI | Zbl
[5] Polynômes de Schubert, C. R. Math. Acad. Sci. Paris, Volume 295 (1982) no. 3, pp. 447-450 | Zbl
[6] Notes on Schubert polynomials, Publications du Laboratoire de combinatoire et d’informatique mathématique, 6, Université du Québec à Montréal, 1991
[7] Symmetric functions, Schubert polynomials, and degeneracy loci, SMF/AMS Texts and Monographs, 6, American Mathematical Society, 2001 | MR | Zbl
[8] Some Schubert shenanigans (2017) (https://arxiv.org/abs/1704.00851)
Cité par Sources :