@article{AMBP_1994__1_1_75_0, author = {Bajpai, S.D. and Arora, M.S.}, title = {Semi-orthogonality of a class of the {Gauss'} hypergeometric polynomials}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {75--83}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {1}, number = {1}, year = {1994}, mrnumber = {1275218}, zbl = {0798.33006}, language = {en}, url = {http://archive.numdam.org/item/AMBP_1994__1_1_75_0/} }
TY - JOUR AU - Bajpai, S.D. AU - Arora, M.S. TI - Semi-orthogonality of a class of the Gauss' hypergeometric polynomials JO - Annales mathématiques Blaise Pascal PY - 1994 SP - 75 EP - 83 VL - 1 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - http://archive.numdam.org/item/AMBP_1994__1_1_75_0/ LA - en ID - AMBP_1994__1_1_75_0 ER -
%0 Journal Article %A Bajpai, S.D. %A Arora, M.S. %T Semi-orthogonality of a class of the Gauss' hypergeometric polynomials %J Annales mathématiques Blaise Pascal %D 1994 %P 75-83 %V 1 %N 1 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U http://archive.numdam.org/item/AMBP_1994__1_1_75_0/ %G en %F AMBP_1994__1_1_75_0
Bajpai, S.D.; Arora, M.S. Semi-orthogonality of a class of the Gauss' hypergeometric polynomials. Annales mathématiques Blaise Pascal, Tome 1 (1994) no. 1, pp. 75-83. http://archive.numdam.org/item/AMBP_1994__1_1_75_0/
[1] A new orthogonality property for the Jacobi polynomials and its applications. Nat. Acad. Sci. Letters, Vol. 15, No 7 (1992), 1-6. | MR | Zbl
[2] Higher transcendental functions. Vol. 1, Mc Graw-Hill, New York (1953). | Zbl
, et. al.[3] Higher transcendental functions. Vol. 2, Mc Graw-Hill, New York (1953). | Zbl
, et. al.[4] Tables of integral transforms. Vol. 2, Mc Graw-Hill, New York (1954). | Zbl
, et. al.[5] The G- and H- functions as symmetrical Fourier Kernels. Trans. Amer. Math. Soc., 98 (1961), 395-429. | MR | Zbl
[6] The H-function with applications in statistics and other disciplines. John Wiley and Sons, New Delhi (1978). | MR | Zbl
and