Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert  [ A Kazhdan-Margulis-Zassenhaus lemma for Hilbert geometry ]
Annales mathématiques Blaise Pascal, Volume 20 (2013) no. 2, p. 363-376

We prove a Kazhdan-Margulis-Zassenhaus lemma for Hilbert geometries. More precisely, in every dimension n there exists a constant ε n >0 such that, for any properly convex open set Ω and any point xΩ, any discrete group generated by a finite number of automorphisms of Ω, which displace x at a distance less than ε n , is virtually nilpotent.

On montre un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert. Plus précisément, en toute dimension n, il existe une constante ε n >0 telle que, pour tout ouvert proprement convexe Ω, pour tout point xΩ, tout groupe discret engendré par un nombre fini d’automorphismes de Ω qui déplacent le point x de moins de ε n est virtuellement nilpotent.

DOI : https://doi.org/10.5802/ambp.330
Classification:  22E40,  22F50,  57M99
Keywords: Hilbert’s geometry, lemma of Margulis, action geometrically finite
@article{AMBP_2013__20_2_363_0,
     author = {Crampon, Micka\"el and Marquis, Ludovic},
     title = {Un lemme de Kazhdan-Margulis-Zassenhaus pour les g\'eom\'etries de Hilbert},
     journal = {Annales math\'ematiques Blaise Pascal},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {20},
     number = {2},
     year = {2013},
     pages = {363-376},
     doi = {10.5802/ambp.330},
     mrnumber = {3138033},
     zbl = {1282.22007},
     language = {fr},
     url = {http://www.numdam.org/item/AMBP_2013__20_2_363_0}
}
Crampon, Mickaël; Marquis, Ludovic. Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert. Annales mathématiques Blaise Pascal, Volume 20 (2013) no. 2, pp. 363-376. doi : 10.5802/ambp.330. http://www.numdam.org/item/AMBP_2013__20_2_363_0/

[1] Ballmann, Werner; Gromov, Mikhael; Schroeder, Viktor Manifolds of nonpositive curvature, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 61 (1985) | MR 823981 | Zbl 0591.53001

[2] Benoist, Yves Automorphismes des cônes convexes, Invent. Math., Tome 141 (2000) no. 1, pp. 149-193 | Article | MR 1767272 | Zbl 0957.22008

[3] Benoist, Yves Convexes divisibles. II, Duke Math. J., Tome 120 (2003) no. 1, pp. 97-120 | Article | MR 2010735 | Zbl 1037.22022

[4] Benoist, Yves Convexes divisibles. I, Algebraic groups and arithmetic, Tata Inst. Fund. Res., Mumbai (2004), pp. 339-374 | MR 2094116 | Zbl 1084.37026

[5] Benoist, Yves Convexes divisibles. III, Ann. Sci. École Norm. Sup. (4), Tome 38 (2005) no. 5, pp. 793-832 | Numdam | MR 2195260 | Zbl 1085.22006

[6] Benoist, Yves Convexes divisibles. IV. Structure du bord en dimension 3, Invent. Math., Tome 164 (2006) no. 2, pp. 249-278 | Article | MR 2218481 | Zbl 1107.22006

[7] Benoist, Yves Convexes hyperboliques et quasiisométries, Geom. Dedicata, Tome 122 (2006), pp. 109-134 | Article | MR 2295544 | Zbl 1122.20020

[8] Benzécri, Jean-Paul Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France, Tome 88 (1960), pp. 229-332 | Numdam | MR 124005 | Zbl 0098.35204

[9] Bosché, A. Symmetric cones, the Hilbert and Thompson metrics, ArXiv e-prints (2012)

[10] Breuillard, E.; Green, B.; Tao, T. The structure of approximate groups, ArXiv e-prints (2011) | MR 3090256

[11] Busemann, Herbert The geometry of geodesics, Academic Press Inc., New York, N. Y. (1955) | MR 75623 | Zbl 0112.37002

[12] Choi, Suhyoung Convex decompositions of real projective surfaces. I. π-annuli and convexity, J. Differential Geom., Tome 40 (1994) no. 1, pp. 165-208 http://projecteuclid.org/getRecord?id=euclid.jdg/1214455291 | MR 1285533 | Zbl 0818.53042

[13] Choi, Suhyoung Convex decompositions of real projective surfaces. II. Admissible decompositions, J. Differential Geom., Tome 40 (1994) no. 2, pp. 239-283 http://projecteuclid.org/getRecord?id=euclid.jdg/1214455537 | MR 1293655 | Zbl 0822.53009

[14] Choi, Suhyoung The Margulis lemma and the thick and thin decomposition for convex real projective surfaces, Adv. Math., Tome 122 (1996) no. 1, pp. 150-191 | Article | MR 1405450 | Zbl 0862.53008

[15] Choi, Suhyoung The deformation spaces of projective structures on 3-dimensional Coxeter orbifolds, Geom. Dedicata, Tome 119 (2006), pp. 69-90 | Article | MR 2247648 | Zbl 1103.57013

[16] Choi, Suhyoung The convex real projective manifolds and orbifolds with radial ends : the openness of deformations, ArXiv e-prints (2010)

[17] Choi, Suhyoung; Goldman, William Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc., Tome 118 (1993) no. 2, pp. 657-661 | Article | MR 1145415 | Zbl 0810.57005

[18] Choi, Suhyoung; Goldman, William The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc. (N.S.), Tome 34 (1997) no. 2, pp. 161-171 | Article | MR 1414974 | Zbl 0866.57001

[19] Colbois, Bruno; Vernicos, Constantin Bas du spectre et delta-hyperbolicité en géométrie de Hilbert plane, Bull. Soc. Math. France, Tome 134 (2006) no. 3, pp. 357-381 | Numdam | MR 2245997 | Zbl 1117.53034

[20] Cooper, D.; Long, D.; Tillmann, S. On Convex Projective Manifolds and Cusps, ArXiv e-prints (2011)

[21] Crampon, M.; Marquis, L. Finitude géométrique en géométrie de Hilbert, ArXiv e-prints (2012)

[22] Goldman, William Convex real projective structures on compact surfaces, J. Differential Geom., Tome 31 (1990) no. 3, pp. 791-845 http://projecteuclid.org/getRecord?id=euclid.jdg/1214444635 | MR 1053346 | Zbl 0711.53033

[23] Goldman, William Projective geometry on manifolds (2010) (Notes from a course given in 1988)

[24] Gromov, M. Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 182 (1993), pp. 1-295 | MR 1253544

[25] De La Harpe, Pierre On Hilbert’s metric for simplices, Geometric group theory, Vol. 1 (Sussex, 1991), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 181 (1993), pp. 97-119 | Article | MR 1238518 | Zbl 0832.52002

[26] Johnson, Dennis; Millson, John J. Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984), Birkhäuser Boston, Boston, MA (Progr. Math.) Tome 67 (1987), pp. 48-106 | MR 900823 | Zbl 0664.53023

[27] Kac, Victor; Vinberg, Èrnest Quasi-homogeneous cones, Mat. Zametki, Tome 1 (1967), pp. 347-354 | MR 208470 | Zbl 0163.16902

[28] Kapovich, Michael Convex projective structures on Gromov-Thurston manifolds, Geom. Topol., Tome 11 (2007), pp. 1777-1830 | Article | MR 2350468 | Zbl 1130.53024

[29] Každan, D. A.; Margulis, G. A. A proof of Selberg’s hypothesis, Mat. Sb. (N.S.), Tome 75 (117) (1968), pp. 163-168 | MR 223487 | Zbl 0241.22024

[30] Lemmens, Bas; Walsh, Cormac Isometries of polyhedral Hilbert geometries, J. Topol. Anal., Tome 3 (2011) no. 2, pp. 213-241 | Article | MR 2819195 | Zbl 1220.53090

[31] Margulis, G. A. Discrete groups of motions of manifolds of nonpositive curvature, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 2, Canad. Math. Congress, Montreal, Que. (1975), pp. 21-34 | MR 492072 | Zbl 0336.57037

[32] Marquis, Ludovic Espace des modules marqués des surfaces projectives convexes de volume fini, Geom. Topol., Tome 14 (2010) no. 4, pp. 2103-2149 | Article | MR 2740643 | Zbl 1225.32022

[33] Marquis, Ludovic Exemples de variétés projectives strictement convexes de volume fini en dimension quelconque, Enseign. Math. (2), Tome 58 (2012), pp. 3-47 | Article | MR 2985008 | Zbl pre06187655

[34] Marquis, Ludovic Finite volume convex projective surface. (Surface projective convexe de volume fini.), Ann. Inst. Fourier, Tome 62 (2012) no. 1, pp. 325-392 | Article | Numdam | MR 2986273 | Zbl 1254.57015

[35] Milman, V. D.; Pajor, A. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, Geometric aspects of functional analysis (1987–88), Springer, Berlin (Lecture Notes in Math.) Tome 1376 (1989), pp. 64-104 | Article | MR 1008717 | Zbl 0679.46012

[36] Raghunathan, M. S. Discrete subgroups of Lie groups, Springer-Verlag, New York (1972) (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68) | MR 507234 | Zbl 0254.22005

[37] Vernicos, Constantin Introduction aux géométries de Hilbert, Actes de Séminaire de Théorie Spectrale et Géométrie. Vol. 23. Année 2004–2005, Univ. Grenoble I, Saint (Sémin. Théor. Spectr. Géom.) Tome 23 (2005), pp. 145-168 | Numdam | MR 2270228 | Zbl 1100.53031

[38] Vey, Jacques Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa (3), Tome 24 (1970), pp. 641-665 | Numdam | MR 283720 | Zbl 0206.51302

[39] Zassenhaus, Hans Beweis eines Satzes über diskrete Gruppen., Abh. math. Sem. Hansische Univ., Tome 12 (1938), pp. 289-312 | Article | Zbl 0023.01403