Π 2 - Théorie des ensembles
Annales scientifiques de l'Université de Clermont. Mathématiques, Tome 73 (1982) no. 21, pp. 15-45.
@article{ASCFM_1982__73_21_15_0,
     author = {Pabion, J.-F.},
     title = {$\Pi _2$ - {Th\'eorie} des ensembles},
     journal = {Annales scientifiques de l'Universit\'e de Clermont. Math\'ematiques},
     pages = {15--45},
     publisher = {UER de Sciences exactes et naturelles de l'Universit\'e de Clermont},
     volume = {73},
     number = {21},
     year = {1982},
     zbl = {0574.03040},
     language = {fr},
     url = {http://archive.numdam.org/item/ASCFM_1982__73_21_15_0/}
}
TY  - JOUR
AU  - Pabion, J.-F.
TI  - $\Pi _2$ - Théorie des ensembles
JO  - Annales scientifiques de l'Université de Clermont. Mathématiques
PY  - 1982
SP  - 15
EP  - 45
VL  - 73
IS  - 21
PB  - UER de Sciences exactes et naturelles de l'Université de Clermont
UR  - http://archive.numdam.org/item/ASCFM_1982__73_21_15_0/
LA  - fr
ID  - ASCFM_1982__73_21_15_0
ER  - 
%0 Journal Article
%A Pabion, J.-F.
%T $\Pi _2$ - Théorie des ensembles
%J Annales scientifiques de l'Université de Clermont. Mathématiques
%D 1982
%P 15-45
%V 73
%N 21
%I UER de Sciences exactes et naturelles de l'Université de Clermont
%U http://archive.numdam.org/item/ASCFM_1982__73_21_15_0/
%G fr
%F ASCFM_1982__73_21_15_0
Pabion, J.-F. $\Pi _2$ - Théorie des ensembles. Annales scientifiques de l'Université de Clermont. Mathématiques, Tome 73 (1982) no. 21, pp. 15-45. http://archive.numdam.org/item/ASCFM_1982__73_21_15_0/

[1] J. Barwise (1975) - Admissible sets and structures - Springer - Berlin. | MR | Zbl

[2] R. Dalin (1979) - Une théorie locale des ensembles: Π2- ZF - Forcing dans cette théorie- Thèse de 3e Cycle - LYON.

[3] Drake (1974)- Set theory: an introduction to large cardinals- North-Holland- Pub. | Zbl

[4] H. Gaifmann (1972)-A note on models and submodels of arithmetic- Conf. in Math. Logic - London 1970 - Lectures Notes in Math. - Vol. 255 - Springer Berlin - pp. 128-144. | MR | Zbl

[5] M. Guillaume (1977) - Some remarks in set theory - Math. Logic - Proceedings of the 1st Brazilian conference- Dekker Inc. - New-York. | MR | Zbl

[6] D.G. Goldrei, A. Mac Intyre and H. Simmons (1973) - The forcing companions of number theories - Isr. J. Math. - Vol.14 - pp. 317-337. | MR | Zbl

[7] J. Hirschfeld (1975) - Forcing - Arithmetic and Division Rings - Lectures Notes in Math. Vol. 454 - Springer Berlin. | MR | Zbl

[8] J. Myhill and D. Scott (1971) - Ordinal definability-Axiomatic set theory- Proceedings of symp. in pure Math. - Providence - pp. 271-278. | MR | Zbl

[ 9] J.F. Pabion (1978) - V = HC ? Non publié.

[ 10] M.O. Rabin (1962) - Diophantine equations and non-standard models of arithmetics- Proceedings of the 1960 Int. Cong. in Logic. Math. and Ph. Sc. - Stanford University Press - pp. 151-158. | MR | Zbl

[11] M.O. Rabin (1961)- Non-standard models and the independance of induction axiom-Essays on the found. of Math. - The Magness Press - Jerusalem - pp. 287-299. | MR | Zbl

[12] R. Shoenfield (1967) - Mathematical Logic - Addison Wesley. | MR | Zbl

[ 13] A. Wilkie (1973) - On models of arithmetic- J.S.L. - Vol. 40 - pp. 41-47. | MR | Zbl