@article{ASENS_1979_4_12_1_47_0, author = {Greene, R. E. and Wu, H.}, title = {$C^\infty $ approximations of convex, subharmonic, and plurisubharmonic functions}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {47--84}, publisher = {Elsevier}, volume = {Ser. 4, 12}, number = {1}, year = {1979}, doi = {10.24033/asens.1361}, mrnumber = {80m:53055}, zbl = {0415.31001}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.1361/} }
TY - JOUR AU - Greene, R. E. AU - Wu, H. TI - $C^\infty $ approximations of convex, subharmonic, and plurisubharmonic functions JO - Annales scientifiques de l'École Normale Supérieure PY - 1979 SP - 47 EP - 84 VL - 12 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.24033/asens.1361/ DO - 10.24033/asens.1361 LA - en ID - ASENS_1979_4_12_1_47_0 ER -
%0 Journal Article %A Greene, R. E. %A Wu, H. %T $C^\infty $ approximations of convex, subharmonic, and plurisubharmonic functions %J Annales scientifiques de l'École Normale Supérieure %D 1979 %P 47-84 %V 12 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.24033/asens.1361/ %R 10.24033/asens.1361 %G en %F ASENS_1979_4_12_1_47_0
Greene, R. E.; Wu, H. $C^\infty $ approximations of convex, subharmonic, and plurisubharmonic functions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 12 (1979) no. 1, pp. 47-84. doi : 10.24033/asens.1361. http://archive.numdam.org/articles/10.24033/asens.1361/
[1] Riemann Surfaces (Princeton Mathematical Series, N°. 26, Princeton University Press, Princeton, N.J. 1960). | MR | Zbl
and ,[2] Le spectre d'une variété riemannienne (Lecture Notes in Math., No. 194, Springer-Verlag, New York, 1971). | MR | Zbl
, and ,[3] Lectures on Potential Theory, Tata Institute of Fundamental Research, Bombay, 1960 (reissued 1967). | Zbl
,[4] The Conservation Property of the Heat Equation on Riemannian Manifolds (Comm. Pure Appl. Math., 12, 1959, pp. 1-11). | MR | Zbl
,[5] On the Subharmonicity and Plurisubharmonicity of Geodesically Convex Functions (Indiana Univ. Math. J., 22, 1973, pp. 641-653) ; (b) Integrals of Subharmonic Functions on Manifolds of Nonnegative Curvature (Invent. Math., 27, 1974, pp. 265-298) ; (c) Approximation Theorems, C∞ Convex Exhaustions and Manifolds of Positive Curvature (Bull. Amer. Math. Soc., 81, 1975, pp. 101-104) ; (d) Whitney's Imbedding Theorem by Solutions of Elliptic Equations and Geometric Consequences (Proc. Symp. Pure Math., Vol. 27, part II, Amer. Math. Soc., Providence, R.I., 1975, pp. 287-296) ; (e) C∞ Convex Functions and Manifolds of Positive Curvature (Acta Math., 137, 1976, pp. 209-245) ; (f) On Kähler Manifolds of Positive Bisectional Curvature and a Theorem of Hartogs (Abh. Math. Sem., Univ. Hamburg, 47, 1978, pp. 171-185). | MR
and , (a)[6] Analytic and Plurisubharmonic Functions in Finite and Infinite Dimensional Spaces (Lecture Notes in Math. No. 198, Springer-Verlag, Berlin-Heidelberg-New York, 1971). | MR | Zbl
,[7] Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel (Ann. Ins. Fourier, Grenoble, 12, 1962, pp. 415-571). | Numdam | MR | Zbl
,[8] Differential Topology, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | MR | Zbl
,[9] A Strong Maximum Principle for Weakly L-Subharmonic Functions [J. Math. and Mech. (Indiana Univ. Math. J.) 8, 1959, pp. 761-770]. | MR | Zbl
,[10] Elementary Differential Topology [Ann. Math. Studies, No. 54, Princeton Univ. Press, Princeton, N.J., (revised edition) 1966]. | MR | Zbl
,[11] Stetige Streng Pseudoconvexe Funktionen (Math. Ann., 1975, 1968, pp. 257-286). | Zbl
,[12] Some Function-Theoretic Properties of Complete Riemannian Manifolds and their Applications to Geometry (Indiana Univ. Math. J., 25, 1976, pp. 659-670). | MR | Zbl
,Cité par Sources :