Correspondance de Langlands locale pour GL n et conducteurs de paires
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 31 (1998) no. 4, p. 537-560
@article{ASENS_1998_4_31_4_537_0,
     author = {Bushnell, Colin J. and Henniart, Guy and Kutzko, Philip C.},
     title = {Correspondance de Langlands locale pour ${\rm GL}\_n$ et conducteurs de paires},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {4e s{\'e}rie, 31},
     number = {4},
     year = {1998},
     pages = {537-560},
     doi = {10.1016/s0012-9593(98)80106-7},
     zbl = {0915.11055},
     mrnumber = {99h:22011},
     language = {fr},
     url = {http://www.numdam.org/item/ASENS_1998_4_31_4_537_0}
}
Bushnell, Colin J.; Henniart, Guy; Kutzko, Philip C. Correspondance de Langlands locale pour ${\rm GL}_n$ et conducteurs de paires. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 31 (1998) no. 4, pp. 537-560. doi : 10.1016/s0012-9593(98)80106-7. http://www.numdam.org/item/ASENS_1998_4_31_4_537_0/

[1] J. Arthur et L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula (Annals of Math. Studies, vol. 120, Princeton University Press, 1989). | MR 90m:22041 | Zbl 0682.10022

[2] C. J. Bushnell et A. Fröhlich, Gauss sums and p-adic division algebras (Lecture Notes in Math., vol. 987, Springer, Berlin, 1983). | MR 84m:12017 | Zbl 0507.12008

[3] C. J. Bushnell et G. Henniart, Local tame lifting for GLn I : simple characters (Publ. Math. IHES, vol. 83, 1996, p. 105-233). | Numdam | MR 98m:11129 | Zbl 0878.11042

[4] C. J. Bushnell et G. Henniart, Local tame lifting for GLn II : wildly ramified supercuspidals (Manuscrit, Mai 1997).

[5] C. J. Bushnell, G. Henniart et P. C. Kutzko, Local Rankin-Selberg convolutions for GLn : Explicit conductor formula (J. Amer. Math. Soc., à paraître). | Zbl 0899.22017

[6] C. J. Bushnell et P. C. Kutzko, Simple types in GL(N) : computing conjugacy classes. Representation theory and analysis on homogeneous spaces (S. Gindikin et al, eds.) (Contemp. Math, vol. 177, Amer. Math. Soc., Providence, 1995, p. 107-135). | MR 96c:22027 | Zbl 0835.22009

[7] R. Godement et H. Jacquet, Zeta functions of simple algebras (Lecture Notes in Math., vol. 260, Springer, Berlin 1972). | MR 49 #7241 | Zbl 0244.12011

[8] M. Harris, Supercuspidal representations in the cohomology of Drinfel'd upper half-spaces ; elaboration of Carayol's program (Invent. Math., vol. 129, 1997, p. 75-120). | MR 98i:11100 | Zbl 0886.11029

[9] M. Harris, p-adic uniformization and Galois properties of automorphic forms (Manuscrit, 1997).

[10] G. Henniart, Représentations du groupe de Weil d'un corps local (L'Ens. Math., vol. 26, 1980, p. 155-172). | MR 81j:12012 | Zbl 0452.12006

[11] G. Henniart, La conjecture de Langlands locale pour GL(n). Journées Arithmétiques de Metz (Astérisque, vol. 94, 1982, p. 67-85). | MR 84g:12021 | Zbl 0504.12017

[12] G. Henniart, La conjecture de Langlands locale pour GL(3) (Mém. Soc. Math. France, nouvelle série, vol. 11/12, 1984). | Numdam | Zbl 0577.12011

[13] G. Henniart, On the local Langlands conjecture for GL(n) : the cyclic case (Ann. Math., vol. 123, 1986, p. 145-203). | MR 87k:11132 | Zbl 0588.12010

[14] G. Henniart, La conjecture de Langlands locale numérique pour GL(n) (Ann. Scient. Éc. Norm. Sup., (4), vol. 21, 1988, p. 497-544). | Numdam | MR 90f:11094 | Zbl 0666.12013

[15] G. Henniart, Une conséquence de la théorie du changement de base pour GL(n) (Analytic Number Theory, Tokyo, Lecture Notes in Math. 1988, vol. 1434, Springer, Berlin, 1990, p. 138-142). | MR 91i:22021 | Zbl 0703.11069

[16] G. Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires (Invent. Math., vol. 113, 1993, p. 339-350). | MR 96e:11078 | Zbl 0810.11069

[17] G. Henniart, lettre à Michael Harris, janvier 1994.

[18] G. Henniart et R. Herb, Automorphic induction for GL(n) (over local non-archimedean fields) (Duke Math. J., vol. 78, 1995, p. 131-192). | MR 96i:22038 | Zbl 0849.11092

[19] H. Jacquet, I. I. Piatetskii-Shapiro et J. Shalika, Conducteur des représentations du groupe linéaire (Math. Ann., vol. 236, 1981, p. 199-214). | MR 83c:22025 | Zbl 0443.22013

[20] H. Jacquet, I. I. Piatetskii-Shapiro et J. A. Shalika, Rankin-Selberg convolutions (Amer. J. Math., vol. 105, 1983, p. 367-483). | MR 85g:11044 | Zbl 0525.22018

[21] H. Jacquet et J. A. Shalika, On Euler products and the classification of automorphic representations II (Amer. J. Math., vol. 103, 1981, p. 777-815). | Zbl 0491.10020

[22] D. A. Kazhdan, On lifting. Lie Group Representations II (Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, p. 209-249). | MR 86h:22029 | Zbl 0538.20014

[23] H. Koch, Bemerkungen zur numerischen lokalen Langlands Vermutung (Proc. Steklov Inst., vol. 183, 1984, p. 129-136). | Zbl 0557.12009

[24] P. C. Kutzko, The Langlands conjecture for GL2 of a local field (Ann. Math., vol. 112, 1980, p. 381-412). | MR 82e:12019 | Zbl 0469.22013

[25] P. C. Kutzko et A. Moy, On the local Langlands conjecture in prime dimension (Ann. Math., vol. 121, 1985, p. 495-517). | MR 87d:11092 | Zbl 0609.12017

[26] J.-P. Labesse, Non-invariant base change identities (Bull. Soc. Math. France, vol. 61, 1995). | Numdam | MR 97b:11136 | Zbl 0868.11026

[27] R. P. Langlands, Problems in the theory of automorphic forms. Lectures in modern analysis and applications III (Lecture Notes in Math, vol. 170, Springer, Berlin, 1970, p. 18-86). | MR 46 #1758 | Zbl 0225.14022

[28] R. P. Langlands, Base change for GL(2) (Ann. Math. Studies, vol. 96, Princeton University Press, 1980). | MR 82a:10032 | Zbl 0444.22007

[29] G. Laumon, M. Rapoport et U. Stuhler, D-elliptic sheaves and the Langlands correspondence (Invent. Math., vol. 113, 1993, p. 217-338). | MR 96e:11077 | Zbl 0809.11032

[30] C. Mœglin, Sur la correspondance de Langlands-Kazhdan (J. Math. pures et appl., vol. 69, 1990, p. 175-226). | MR 91g:11141 | Zbl 0711.11045

[31] A. Moy, Local constants and the tame Langlands correspondence (Amer. J. Math., vol. 108, 1986, p. 863-930). | MR 88b:11081 | Zbl 0597.12019

[32] H. Reimann, Representations of tamely ramified p-adic division and matrix rings (J. Number Theory, vol. 38, 1991, p. 58-105). | MR 92h:11103 | Zbl 0728.11063

[33] F. Rodier, Représentations de GL(n, k) où k est un corps p-adique (Séminaire Bourbaki, vol. 587, 1981/1982, Astérisque, vol. 92-93, 1982, p. 201-218). | Numdam | MR 84h:22040 | Zbl 0506.22019

[34] F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for GL(n) (Amer. J. Math., vol. 106, 1984, p. 67-111). | MR 86b:22031 | Zbl 0567.22008

[35] J. Tate, Number theoretic background. Automorphic forms, representations and L-functions (A. Borel and W. Casselman, eds.) (Proc. Symposia Pure Math, vol. 33, part 2 (Amer. Math. Soc., Providence, 1979), p. 3-22). | MR 80m:12009 | Zbl 0422.12007

[36] A. V. Zelevinsky, Induced representations of reductive p-adic groups II : On irreducible representations of GL(n) (Ann. Scient. Éc. Norm. Sup., (4), vol. 13, 1980, p. 165-210). | Numdam | MR 83g:22012 | Zbl 0441.22014