@article{ASENS_2001_4_34_6_891_0, author = {Swinnerton-Dyer, Peter}, title = {The solubility of diagonal cubic surfaces}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {891--912}, publisher = {Elsevier}, volume = {Ser. 4, 34}, number = {6}, year = {2001}, doi = {10.1016/s0012-9593(01)01080-1}, mrnumber = {1872424}, zbl = {1003.11028}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/s0012-9593(01)01080-1/} }
TY - JOUR AU - Swinnerton-Dyer, Peter TI - The solubility of diagonal cubic surfaces JO - Annales scientifiques de l'École Normale Supérieure PY - 2001 SP - 891 EP - 912 VL - 34 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/s0012-9593(01)01080-1/ DO - 10.1016/s0012-9593(01)01080-1 LA - en ID - ASENS_2001_4_34_6_891_0 ER -
%0 Journal Article %A Swinnerton-Dyer, Peter %T The solubility of diagonal cubic surfaces %J Annales scientifiques de l'École Normale Supérieure %D 2001 %P 891-912 %V 34 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/s0012-9593(01)01080-1/ %R 10.1016/s0012-9593(01)01080-1 %G en %F ASENS_2001_4_34_6_891_0
Swinnerton-Dyer, Peter. The solubility of diagonal cubic surfaces. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 34 (2001) no. 6, pp. 891-912. doi : 10.1016/s0012-9593(01)01080-1. http://archive.numdam.org/articles/10.1016/s0012-9593(01)01080-1/
[1] Solubility of certain pencils of curves of genus 1, and of the intersection of two quadrics in P4, Proc. London Math. Soc. 83 (3) (2001) 299-329. | MR | Zbl
, ,[2] Arithmetic on curves of genus 1, I. On a conjecture of Selmer, J. Reine Angew. Math. 202 (1959) 52-99. | MR | Zbl
,[3] On the Hasse principle for cubic surfaces, Mathematika 13 (1966) 111-120. | MR | Zbl
, ,[4] Surfaces cubiques diagonales, in: Séminaire de théorie des nombres, Paris 1984-85, Progress in Math., 63, Birkhäuser, 1986, pp. 51-66. | MR | Zbl
,[5] Arithmétique des surfaces cubiques diagonales, in: Diophantine Approximation and Transcendence Theory, Springer Lecture Notes, 1290, 1987, pp. 1-108. | MR | Zbl
, , ,[6] Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points, Invent. Math. 134 (1998) 579-650. | MR | Zbl
, , ,[7] Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Teil I, Jahresbericht der D.M.V. 35 (1926) 1-55. | JFM
,[8] The solubility of diagonal cubic diophantine equations, Proc. London Math. Soc. (3) 79 (1999) 241-259. | MR | Zbl
,[9] Application of the conjecture on the Manin obstruction to various Diophantine problems, Astérisque 147-148 (1987) 307-314. | Numdam | MR | Zbl
,[10] Arithmetic Duality Theorems, Academic Press, 1986. | MR | Zbl
,[11] Sufficient congruence conditions for the existence of rational points on certain cubic surfaces, Math. Scand. 1 (1953) 113-119. | EuDML | MR | Zbl
,[12] Some applications of Schinzel's Hypothesis to Diophantine Equations, in: , , (Eds.), Number Theory in Progress, 1999. | Zbl
,Cité par Sources :