@article{ASENS_2001_4_34_6_871_0, author = {Barbot, Thierry}, title = {Plane affine geometry and {Anosov} flows}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {871--889}, publisher = {Elsevier}, volume = {Ser. 4, 34}, number = {6}, year = {2001}, doi = {10.1016/s0012-9593(01)01079-5}, mrnumber = {1872423}, zbl = {1098.37513}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/s0012-9593(01)01079-5/} }
TY - JOUR AU - Barbot, Thierry TI - Plane affine geometry and Anosov flows JO - Annales scientifiques de l'École Normale Supérieure PY - 2001 SP - 871 EP - 889 VL - 34 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/s0012-9593(01)01079-5/ DO - 10.1016/s0012-9593(01)01079-5 LA - en ID - ASENS_2001_4_34_6_871_0 ER -
%0 Journal Article %A Barbot, Thierry %T Plane affine geometry and Anosov flows %J Annales scientifiques de l'École Normale Supérieure %D 2001 %P 871-889 %V 34 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/s0012-9593(01)01079-5/ %R 10.1016/s0012-9593(01)01079-5 %G en %F ASENS_2001_4_34_6_871_0
Barbot, Thierry. Plane affine geometry and Anosov flows. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 6, pp. 871-889. doi : 10.1016/s0012-9593(01)01079-5. http://archive.numdam.org/articles/10.1016/s0012-9593(01)01079-5/
[1] Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967). | MR | Zbl
,[2] Caractérisation des flots d'Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems 15 (1995) 247-270. | MR | Zbl
,[3] Flots d'Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst. Fourier (Grenoble) 46 (1996) 1451-1517. | Numdam | MR | Zbl
,[4] Generalizations of the Bonatti-Langevin example of Anosov flow and their classification up to topological equivalence, Comm. Anal. Geom. 6 (1998) 749-798. | MR | Zbl
,[5] Un exemple de flot d'Anosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory Dynam. Systems 14 (1994) 633-643. | MR | Zbl
, ,[6] Unique ergodicity for horocycle foliations, Israel J. Math. 26 (1) (1977) 43-67. | MR | Zbl
, ,[7] Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, Edited by F. Buekenhout, 1420 pp. | MR | Zbl
,[8] Anosov flows in 3-manifolds, Ann. of Math. (2) 139 (1) (1994) 79-115. | MR | Zbl
,[9] The structure of branching in Anosov flows of 3-manifolds, Comment. Math. Helv. 73 (2) (1998) 259-297. | MR | Zbl
,[10] Foulon P., private communication.
[11] Anosov diffeomorphisms, in: Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., XIV, American Mathematical Society, Providence, RI, 1970, pp. 61-93. | MR | Zbl
,[12] Anomalous Anosov flows, in: Lectures Notes in Math., 819, 1980, pp. 158-174. | MR | Zbl
, ,[13] Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983) 299-303. | MR | Zbl
,[14] Flots d'Anosov sur les 3-variétés fibrées en cercles, Ergodic Theory Dynam. Systems 4 (1) (1984) 67-80. | MR | Zbl
,[15] Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup. (4) 20 (2) (1987) 251-270. | Numdam | MR | Zbl
,[16] Déformations de flots d'Anosov et de groupes fuchsiens, Ann. Inst. Fourier (Grenoble) 42 (1-2) (1992) 209-247. | Numdam | MR | Zbl
,[17] Rigidité différentiable des groupes fuchsiens, Inst. Hautes Études Sci. Publ. Math. 78 (1993) 163-185. | Numdam | MR | Zbl
,[18] Dehn surgery on Anosov flows, in: Lectures Notes in Math., 1007, 1983, pp. 300-307. | MR | Zbl
,[19] Anosov flows on new three manifolds, Invent. Math. 59 (1980) 95-103. | MR | Zbl
, ,[20] Introduction to the Modern Theory of Dynamical Systems (With a supplementary chapter by A. Katok and L. Mendoza), Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995. | MR | Zbl
, ,[21] Prevalence of non-Lipschitz Anosov foliations, Ergodic Theory Dynam. Systems 19 (1998) 643-656. | MR | Zbl
, ,[22] Stable manifolds and hyperbolic sets, in: Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., XIV, American Mathematical Society, Providence, RI, 1970, pp. 133-163. | MR | Zbl
, ,[23] Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Inst. Hautes Études Sci. Publ. Math. 72 (1990) 5-61. | Numdam | MR | Zbl
, ,[24] Certain measures that are connected with U-flows on compact manifolds, Functional Anal. Appl. 4 (1970) 55-67. | MR | Zbl
,[25] On codimension one Anosov diffeomorphisms, Amer. J. Math. 92 (1970) 761-770. | MR | Zbl
,[26] Open manifolds foliated by planes, Ann. Math. 107 (1978) 109-131. | MR | Zbl
,[27] Anosov flows, Amer. J. Math. 94 (1972) 729-754. | MR | Zbl
,[28] Anosov flows, transversely affine foliations, and a conjecture of Verjovsky, J. London Math. Soc. (2) 23 (2) (1981) 359-362. | MR | Zbl
,[29] Anosov flows and the fundamental group, Topology 11 (1972) 147-150. | MR | Zbl
, ,[30] Compact Projective Planes, De Gruyter Expositions in Mathematics, 21, Walter de Gruyter, Berlin, 1995. | MR | Zbl
, , , , , ,[31] Codimension one Anosov flows and a conjecture of Verjovsky, Ergodic Theory Dynam. Systems 17 (1997) 1221-1231. | MR | Zbl
,[32] The universal cover of Anosov flows, preprint, 1992.
,[33] Three-manifolds, foliations and circles, I, preprint, 1997, math.gt/9712268. | MR
,[34] Codimension one Anosov flows, Bol. Soc. Mexicana (2) 19 (2) (1974) 49-77. | MR | Zbl
,Cited by Sources: