@article{ASENS_2002_4_35_1_27_0, author = {Danchin, Rapha\"el}, title = {Zero {Mach} number limit in critical spaces for compressible {Navier-Stokes} equations}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {27--75}, publisher = {Elsevier}, volume = {Ser. 4, 35}, number = {1}, year = {2002}, doi = {10.1016/s0012-9593(01)01085-0}, zbl = {1048.35054}, language = {en}, url = {https://www.numdam.org/articles/10.1016/s0012-9593(01)01085-0/} }
TY - JOUR AU - Danchin, Raphaël TI - Zero Mach number limit in critical spaces for compressible Navier-Stokes equations JO - Annales scientifiques de l'École Normale Supérieure PY - 2002 SP - 27 EP - 75 VL - 35 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/s0012-9593(01)01085-0/ DO - 10.1016/s0012-9593(01)01085-0 LA - en ID - ASENS_2002_4_35_1_27_0 ER -
%0 Journal Article %A Danchin, Raphaël %T Zero Mach number limit in critical spaces for compressible Navier-Stokes equations %J Annales scientifiques de l'École Normale Supérieure %D 2002 %P 27-75 %V 35 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/s0012-9593(01)01085-0/ %R 10.1016/s0012-9593(01)01085-0 %G en %F ASENS_2002_4_35_1_27_0
Danchin, Raphaël. Zero Mach number limit in critical spaces for compressible Navier-Stokes equations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 35 (2002) no. 1, pp. 27-75. doi : 10.1016/s0012-9593(01)01085-0. https://www.numdam.org/articles/10.1016/s0012-9593(01)01085-0/
[1] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. 14 (1981) 209-246. | Numdam | MR | Zbl
,[2] Ondelettes, paraproduits et Navier-Stokes, Nouveaux essais, Diderot éditeurs, 1995. | MR | Zbl
,[3] Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal. 23 (1992) 20-28. | MR | Zbl
,[4] Chemin J.-Y., About Navier-Stokes system, Prépublication du Laboratoire d'analyse numérique de Paris 6, R96023, 1996.
[5] Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math. 77 (1999) 27-50. | MR | Zbl
,[6] Global existence in critical spaces for compressible Navier-Stokes equations, Inventiones Math. 141 (2000) 579-614. | MR | Zbl
,[7] Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations 26 (2001) 1183-1233. | MR | Zbl
,[8] Global existence in critical spaces for compressible viscous and heat-conductive gases, Arch. Rational Mech. Anal. 160 (2001) 1-39. | MR | Zbl
,[9] Danchin R., Zero Mach number limit for compressible flows with periodic boundary conditions, submitted. | Zbl
[10] Danchin R., On the uniquiness in critical spaces for compressible Navier-Stokes equations, Nonlinear Differential Equations Appl., to appear. | MR | Zbl
[11] Low Mach number limit of viscous compressible flows in the whole space, Roy. Soc. London Proc. Series A 455 (1986) (1999) 2271-2279. | MR | Zbl
, ,[12] Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl. 78 (1999) 461-471. | MR | Zbl
, , , ,[13] Fabrie P., Galusinski C., The slightly compressible Navier-Stokes equations revisited, Preprint, Mathématiques Appliquées de Bordeaux, France, 1998. | MR
[14] On the Navier-Stokes initial value problem I, Arch. Rational Mech. Anal. 16 (1964) 269-315. | MR | Zbl
, ,[15] Gallagher I., A remark on smooth solutions of the weakly compressible periodic Navier-Stokes equations, Prépublication Université Paris-Sud, Mathématiques, 1999. | MR
[16] Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995) 50-68. | MR | Zbl
, ,[17] All-time existence of classical solutions for slightly compressible flows, SIAM J. Math. Anal. 29 (1998) 652-672. | MR | Zbl
, ,[18] The zero-Mach limit of compressible flows, Comm. Math. Phys. 192 (1998) 543-554. | MR | Zbl
,[19] Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J. 44 (1995) 603-676. | MR | Zbl
, ,[20] Endpoint Strichartz estimates, Amer. J. Math. 120 (1998) 955-980. | MR | Zbl
, ,[21] Compressible and incompressible fluids, Comm. Pure Appl. Math. 35 (1982) 629-651. | MR | Zbl
, ,[22] Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations, Adv. Pure Appl. Math. 12 (1991) 187-214. | MR | Zbl
, , ,[23] Sur le mouvement d'un liquide visqueux remplissant l'espace, Acta Math. 63 (1934) 193-248. | JFM | MR
,[24] On the incompressible limit of the compressible Navier-Stokes equations, Comm. Partial Differential Equations 20 (1995) 677-707. | MR | Zbl
,[25] Mathematical Topics in Fluid Dynamics, Vol. 1. Incompressible Models, Oxford University Press, 1996. | MR | Zbl
,[26] Mathematical Topics in Fluid Dynamics, Vol. 2. Compressible Models, Oxford University Press, 1998. | MR | Zbl
,[27] Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. 77 (1998) 585-627. | MR | Zbl
, ,[28] Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris, Série I 329 (1999) 387-392. | MR | Zbl
, ,[29] Peetre J., New Thoughts on Besov Spaces, Duke University Mathematical Series, Vol. 1, Durham N.C., 1976. | MR | Zbl
[30] Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, 3, Walter de Gruyter, Berlin, 1996. | MR | Zbl
, ,[31] Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977) 705-774. | MR | Zbl
,[32] The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ. 26 (1986) 323-331. | MR | Zbl
,- Low Mach number limit for the global large solutions to the 2D Navier–Stokes–Korteweg system in the critical
framework, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 1 | DOI:10.1007/s00526-024-02857-8 - Compressible Navier–Stokes–Coriolis system in critical Besov spaces, Journal of Differential Equations, Volume 428 (2025), p. 747 | DOI:10.1016/j.jde.2025.02.028
- Global dynamics of large solution for the compressible Navier–Stokes–Korteweg equations, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 5 | DOI:10.1007/s00526-024-02723-7
- On the global well-posedness for the compressible Hall-MHD system, Journal of Mathematical Physics, Volume 65 (2024) no. 1 | DOI:10.1063/5.0175649
- Low Mach number limit of the global solution to the compressible Navier–Stokes system for large data in the critical Besov space, Mathematische Annalen, Volume 388 (2024) no. 4, p. 4083 | DOI:10.1007/s00208-023-02621-x
- The low Mach number limit of non-isentropic magnetohydrodynamic equations with large temperature variations in bounded domains, Science China Mathematics, Volume 67 (2024) no. 4, p. 787 | DOI:10.1007/s11425-022-2127-3
- Incompressible limit for the free surface Navier-Stokes system, Annals of PDE, Volume 9 (2023) no. 1 | DOI:10.1007/s40818-023-00148-7
- Convergence rate of fully compressible Navier-Stokes equations in three-dimensional bounded domains, Discrete and Continuous Dynamical Systems - B, Volume 28 (2023) no. 3, p. 1673 | DOI:10.3934/dcdsb.2022142
- Zero Mach number limit of the compressible primitive equations: Ill-prepared initial data, Journal of Differential Equations, Volume 356 (2023), p. 1 | DOI:10.1016/j.jde.2023.01.031
- Singular limit of planar magnetohydrodynamic equations with vacuum free boundary, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 13, p. 14457 | DOI:10.1002/mma.9331
- On the low Mach number limit of the compressible viscous micropolar fluid model, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 6, p. 7029 | DOI:10.1002/mma.8953
- Mach limits in analytic spaces on exterior domains, Discrete and Continuous Dynamical Systems, Volume 42 (2022) no. 8, p. 3629 | DOI:10.3934/dcds.2022027
- Uniform regularity for the compressible Navier-Stokes system with low Mach number in domains with boundaries, Journal de Mathématiques Pures et Appliquées, Volume 161 (2022), p. 166 | DOI:10.1016/j.matpur.2022.03.004
- The combined quasineutral and incompressible limit for the Navier–Stokes–Poisson system in critical spaces, Journal of Differential Equations, Volume 326 (2022), p. 280 | DOI:10.1016/j.jde.2022.04.019
- Singular limits of the Cauchy problem to the two-layer rotating shallow water equations, Journal of Differential Equations, Volume 289 (2021), p. 59 | DOI:10.1016/j.jde.2021.04.014
- Mach limits in analytic spaces, Journal of Differential Equations, Volume 299 (2021), p. 284 | DOI:10.1016/j.jde.2021.07.014
- Zero limit of entropic relaxation time for the Shliomis model of ferrofluids, Journal of Mathematical Analysis and Applications, Volume 501 (2021) no. 2, p. 125213 | DOI:10.1016/j.jmaa.2021.125213
- Low Mach and Low Froude Number Limit for Vacuum Free Boundary Problem of All-time Classical Solutions of one-dimensional Compressible Navier–Stokes Equations, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 3, p. 3265 | DOI:10.1137/14m1191769
- Zero Mach Number Limit of the Compressible Primitive Equations: Well-Prepared Initial Data, Archive for Rational Mechanics and Analysis, Volume 238 (2020) no. 2, p. 705 | DOI:10.1007/s00205-020-01553-z
- Low Mach number limit for the compressible Navier–Stokes equations with density-dependent viscosity and vorticity-slip boundary condition, Boundary Value Problems, Volume 2020 (2020) no. 1 | DOI:10.1186/s13661-020-01455-9
- Fujita–Kato solution for compressible Navier–Stokes equations with axisymmetric initial data and zero Mach number limit, Communications in Contemporary Mathematics, Volume 22 (2020) no. 05, p. 1950041 | DOI:10.1142/s021919971950041x
- Dispersive effect and global well-posedness of the compressible viscoelastic fluids, Journal of Differential Equations, Volume 269 (2020) no. 11, p. 9254 | DOI:10.1016/j.jde.2020.06.059
- Low Mach number limit of compressible two-fluid model, Zeitschrift für angewandte Mathematik und Physik, Volume 71 (2020) no. 1 | DOI:10.1007/s00033-019-1233-9
- Fundamental equations for primary fluid recovery from porous media, Journal of Fluid Mechanics, Volume 860 (2019), p. 300 | DOI:10.1017/jfm.2018.874
- Approximation by an iterative method of a low‐Mach model with temperature dependent viscosity, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 1, p. 250 | DOI:10.1002/mma.5342
- The combined quasineutral and low Mach number limit of the Navier–Stokes–Poisson system, Zeitschrift für angewandte Mathematik und Physik, Volume 70 (2019) no. 1 | DOI:10.1007/s00033-019-1073-7
- Dispersive effects of weakly compressible and fast rotating inviscid fluids, Discrete Continuous Dynamical Systems - A, Volume 38 (2018) no. 2, p. 749 | DOI:10.3934/dcds.2018033
- Fourier Analysis Methods for the Compressible Navier-Stokes Equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 1843 | DOI:10.1007/978-3-319-13344-7_49
- Low Mach Number Limits and Acoustic Waves, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 2721 | DOI:10.1007/978-3-319-13344-7_69
- Optimal Decay Rate for the Compressible Flow of Liquid Crystals in
L p Type Critical Spaces, Journal of Mathematical Fluid Mechanics, Volume 20 (2018) no. 4, p. 1707 | DOI:10.1007/s00021-018-0386-1 - Zero‐electron‐mass limit of the two‐dimensional compressible Navier‐Stokes‐Poisson equations in bounded domain, Mathematical Methods in the Applied Sciences, Volume 41 (2018) no. 18, p. 9485 | DOI:10.1002/mma.5307
- The incompressible limit for compressible MHD equations inLptype critical spaces, Nonlinear Analysis, Volume 170 (2018), p. 21 | DOI:10.1016/j.na.2017.12.015
- Global Solutions to the Isentropic Compressible Navier–Stokes Equations with a Class of Large Initial Data, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 5, p. 4983 | DOI:10.1137/17m1122062
- Compressible Navier–Stokes system: Large solutions and incompressible limit, Advances in Mathematics, Volume 320 (2017), p. 904 | DOI:10.1016/j.aim.2017.09.025
- Low Mach Number Limits and Acoustic Waves, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2017), p. 1 | DOI:10.1007/978-3-319-10151-4_69-1
- Optimal decay rate for the compressible Navier–Stokes–Poisson system in the critical L framework, Journal of Differential Equations, Volume 263 (2017) no. 12, p. 8391 | DOI:10.1016/j.jde.2017.08.041
- Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces, Kinetic Related Models, Volume 10 (2017) no. 3, p. 741 | DOI:10.3934/krm.2017030
- Low Mach number limit of a compressible micropolar fluid model, Nonlinear Analysis: Real World Applications, Volume 38 (2017), p. 21 | DOI:10.1016/j.nonrwa.2017.04.005
- Global existence and incompressible limit in critical spaces for compressible flow of liquid crystals, Zeitschrift für angewandte Mathematik und Physik, Volume 68 (2017) no. 5 | DOI:10.1007/s00033-017-0862-0
- Fourier Analysis Methods for the Compressible Navier-Stokes Equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_49-1
- The incompressible limit in
L p type critical spaces, Mathematische Annalen, Volume 366 (2016) no. 3-4, p. 1365 | DOI:10.1007/s00208-016-1361-x - Incompressible limit of a compressible micropolar fluid model with general initial data, Nonlinear Analysis, Volume 132 (2016), p. 1 | DOI:10.1016/j.na.2015.10.020
- The Low Mach Number Limit for a Barotropic Model of Radiative Flow, SIAM Journal on Mathematical Analysis, Volume 48 (2016) no. 2, p. 1025 | DOI:10.1137/15m1009081
- From the highly compressible Navier-Stokes equations to the porous medium equation – rate of convergence, Discrete and Continuous Dynamical Systems, Volume 36 (2015) no. 6, p. 3107 | DOI:10.3934/dcds.2016.36.3107
- Résultats d’existence globale et limites asymptotiques pour un modèle de fluide radiatif, Séminaire Laurent Schwartz — EDP et applications (2015), p. 1 | DOI:10.5802/slsedp.67
- Incompressible limit of Oldroyd-B fluids in the whole space, Journal of Differential Equations, Volume 256 (2014) no. 7, p. 2559 | DOI:10.1016/j.jde.2014.01.017
- A Global Existence Result for a Zero Mach Number System, Journal of Mathematical Fluid Mechanics, Volume 16 (2014) no. 1, p. 77 | DOI:10.1007/s00021-013-0152-3
- Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces, Kinetic Related Models, Volume 7 (2014) no. 4, p. 739 | DOI:10.3934/krm.2014.7.739
- Zero-electron-mass limit of Euler-Poisson equations, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 10, p. 4743 | DOI:10.3934/dcds.2013.33.4743
- On a Lagrangian method for the convergence from a non-local to a local Korteweg capillary fluid model, Journal of Functional Analysis, Volume 265 (2013) no. 7, p. 1264 | DOI:10.1016/j.jfa.2013.05.042
- ON THE WELL-POSEDNESS OF THE FULL LOW MACH NUMBER LIMIT SYSTEM IN GENERAL CRITICAL BESOV SPACES, Communications in Contemporary Mathematics, Volume 14 (2012) no. 03, p. 1250022 | DOI:10.1142/s0219199712500228
- Madelung, Gross–Pitaevskii and Korteweg, Nonlinearity, Volume 25 (2012) no. 10, p. 2843 | DOI:10.1088/0951-7715/25/10/2843
- A survey on Fourier analysis methods for solving the compressible Navier-Stokes equations, Science China Mathematics, Volume 55 (2012) no. 2, p. 245 | DOI:10.1007/s11425-011-4357-8
- Low Mach number limit of viscous polytropic fluid flows, Journal of Differential Equations, Volume 251 (2011) no. 8, p. 2037 | DOI:10.1016/j.jde.2011.07.009
- On the linear wave regime of the Gross-Pitaevskii equation, Journal d'Analyse Mathématique, Volume 110 (2010) no. 1, p. 297 | DOI:10.1007/s11854-010-0008-1
- The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data, Chinese Annals of Mathematics, Series B, Volume 30 (2009) no. 1, p. 17 | DOI:10.1007/s11401-008-0039-4
- Low Mach number limit for the non-isentropic Navier–Stokes equations, Journal of Differential Equations, Volume 246 (2009) no. 11, p. 4441 | DOI:10.1016/j.jde.2009.01.012
- Incompressible limits of the Navier–Stokes equations for all time, Journal of Differential Equations, Volume 247 (2009) no. 12, p. 3295 | DOI:10.1016/j.jde.2009.05.009
- HIGHER ORDER ENTROPIES FOR COMPRESSIBLE FLUID MODELS, Mathematical Models and Methods in Applied Sciences, Volume 19 (2009) no. 01, p. 67 | DOI:10.1142/s021820250900336x
- Newtonian Limit for Weakly Viscoelastic Fluid Flows of Oldroyd Type, SIAM Journal on Mathematical Analysis, Volume 39 (2008) no. 5, p. 1577 | DOI:10.1137/070681259
- Examples of Singular Limits in Hydrodynamics, Volume 3 (2007), p. 195 | DOI:10.1016/s1874-5717(07)80006-5
- On the influence of the Earth's Rotation on Geophysical Flows, Volume 4 (2007), p. 201 | DOI:10.1016/s1874-5792(07)80009-7
- Some Recent Asymptotic Results in Fluid Mechanics, Analysis and Simulation of Fluid Dynamics (2006), p. 1 | DOI:10.1007/978-3-7643-7742-7_1
- Low Mach Number Limit of the Full Navier-Stokes Equations, Archive for Rational Mechanics and Analysis, Volume 180 (2006) no. 1, p. 1 | DOI:10.1007/s00205-005-0393-2
- The Incompressible Limits of Viscous Polytropic Fluids with Zero Thermal Conductivity Coefficient, Communications in Partial Differential Equations, Volume 30 (2005) no. 8, p. 1169 | DOI:10.1080/03605300500257560
- Low Mach number limit for viscous compressible flows, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 39 (2005) no. 3, p. 459 | DOI:10.1051/m2an:2005019
- Examples of dispersive effects in non-viscous rotating fluids, Journal de Mathématiques Pures et Appliquées, Volume 84 (2005) no. 3, p. 331 | DOI:10.1016/j.matpur.2004.09.007
- The incompressible limit of solutions of the two‐dimensional compressible Euler system with degenerating initial data, Communications on Pure and Applied Mathematics, Volume 57 (2004) no. 9, p. 1159 | DOI:10.1002/cpa.20026
Cité par 68 documents. Sources : Crossref