Zero Mach number limit in critical spaces for compressible Navier-Stokes equations
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 35 (2002) no. 1, pp. 27-75.
@article{ASENS_2002_4_35_1_27_0,
     author = {Danchin, Rapha\"el},
     title = {Zero {Mach} number limit in critical spaces for compressible {Navier-Stokes} equations},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {27--75},
     publisher = {Elsevier},
     volume = {Ser. 4, 35},
     number = {1},
     year = {2002},
     doi = {10.1016/s0012-9593(01)01085-0},
     zbl = {1048.35054},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/s0012-9593(01)01085-0/}
}
TY  - JOUR
AU  - Danchin, Raphaël
TI  - Zero Mach number limit in critical spaces for compressible Navier-Stokes equations
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2002
SP  - 27
EP  - 75
VL  - 35
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/s0012-9593(01)01085-0/
DO  - 10.1016/s0012-9593(01)01085-0
LA  - en
ID  - ASENS_2002_4_35_1_27_0
ER  - 
%0 Journal Article
%A Danchin, Raphaël
%T Zero Mach number limit in critical spaces for compressible Navier-Stokes equations
%J Annales scientifiques de l'École Normale Supérieure
%D 2002
%P 27-75
%V 35
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/s0012-9593(01)01085-0/
%R 10.1016/s0012-9593(01)01085-0
%G en
%F ASENS_2002_4_35_1_27_0
Danchin, Raphaël. Zero Mach number limit in critical spaces for compressible Navier-Stokes equations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 35 (2002) no. 1, pp. 27-75. doi : 10.1016/s0012-9593(01)01085-0. https://www.numdam.org/articles/10.1016/s0012-9593(01)01085-0/

[1] Bony J.-M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. 14 (1981) 209-246. | Numdam | MR | Zbl

[2] Cannone M., Ondelettes, paraproduits et Navier-Stokes, Nouveaux essais, Diderot éditeurs, 1995. | MR | Zbl

[3] Chemin J.-Y., Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal. 23 (1992) 20-28. | MR | Zbl

[4] Chemin J.-Y., About Navier-Stokes system, Prépublication du Laboratoire d'analyse numérique de Paris 6, R96023, 1996.

[5] Chemin J.-Y., Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math. 77 (1999) 27-50. | MR | Zbl

[6] Danchin R., Global existence in critical spaces for compressible Navier-Stokes equations, Inventiones Math. 141 (2000) 579-614. | MR | Zbl

[7] Danchin R., Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations 26 (2001) 1183-1233. | MR | Zbl

[8] Danchin R., Global existence in critical spaces for compressible viscous and heat-conductive gases, Arch. Rational Mech. Anal. 160 (2001) 1-39. | MR | Zbl

[9] Danchin R., Zero Mach number limit for compressible flows with periodic boundary conditions, submitted. | Zbl

[10] Danchin R., On the uniquiness in critical spaces for compressible Navier-Stokes equations, Nonlinear Differential Equations Appl., to appear. | MR | Zbl

[11] Desjardins B., Grenier E., Low Mach number limit of viscous compressible flows in the whole space, Roy. Soc. London Proc. Series A 455 (1986) (1999) 2271-2279. | MR | Zbl

[12] Desjardins B., Grenier E., Lions P.-L., Masmoudi N., Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl. 78 (1999) 461-471. | MR | Zbl

[13] Fabrie P., Galusinski C., The slightly compressible Navier-Stokes equations revisited, Preprint, Mathématiques Appliquées de Bordeaux, France, 1998. | MR

[14] Fujita H., Kato T., On the Navier-Stokes initial value problem I, Arch. Rational Mech. Anal. 16 (1964) 269-315. | MR | Zbl

[15] Gallagher I., A remark on smooth solutions of the weakly compressible periodic Navier-Stokes equations, Prépublication Université Paris-Sud, Mathématiques, 1999. | MR

[16] Ginibre J., Velo G., Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995) 50-68. | MR | Zbl

[17] Hagstrom T., Lorenz J., All-time existence of classical solutions for slightly compressible flows, SIAM J. Math. Anal. 29 (1998) 652-672. | MR | Zbl

[18] Hoff D., The zero-Mach limit of compressible flows, Comm. Math. Phys. 192 (1998) 543-554. | MR | Zbl

[19] Hoff D., Zumbrun K., Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J. 44 (1995) 603-676. | MR | Zbl

[20] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math. 120 (1998) 955-980. | MR | Zbl

[21] Klainerman S., Majda A., Compressible and incompressible fluids, Comm. Pure Appl. Math. 35 (1982) 629-651. | MR | Zbl

[22] Kreiss H.-O., Lorenz J., Naughton M., Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations, Adv. Pure Appl. Math. 12 (1991) 187-214. | MR | Zbl

[23] Leray J., Sur le mouvement d'un liquide visqueux remplissant l'espace, Acta Math. 63 (1934) 193-248. | JFM | MR

[24] Lin C., On the incompressible limit of the compressible Navier-Stokes equations, Comm. Partial Differential Equations 20 (1995) 677-707. | MR | Zbl

[25] Lions P.-L., Mathematical Topics in Fluid Dynamics, Vol. 1. Incompressible Models, Oxford University Press, 1996. | MR | Zbl

[26] Lions P.-L., Mathematical Topics in Fluid Dynamics, Vol. 2. Compressible Models, Oxford University Press, 1998. | MR | Zbl

[27] Lions P.-L., Masmoudi N., Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. 77 (1998) 585-627. | MR | Zbl

[28] Lions P.-L., Masmoudi N., Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris, Série I 329 (1999) 387-392. | MR | Zbl

[29] Peetre J., New Thoughts on Besov Spaces, Duke University Mathematical Series, Vol. 1, Durham N.C., 1976. | MR | Zbl

[30] Runst T., Sickel W., Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, 3, Walter de Gruyter, Berlin, 1996. | MR | Zbl

[31] Strichartz R., Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977) 705-774. | MR | Zbl

[32] Ukai S., The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ. 26 (1986) 323-331. | MR | Zbl

  • Fujii, Mikihiro; Li, Yang Low Mach number limit for the global large solutions to the 2D Navier–Stokes–Korteweg system in the critical Lp^ framework, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 1 | DOI:10.1007/s00526-024-02857-8
  • Fujii, Mikihiro; Watanabe, Keiichi Compressible Navier–Stokes–Coriolis system in critical Besov spaces, Journal of Differential Equations, Volume 428 (2025), p. 747 | DOI:10.1016/j.jde.2025.02.028
  • Song, Zihao Global dynamics of large solution for the compressible Navier–Stokes–Korteweg equations, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 5 | DOI:10.1007/s00526-024-02723-7
  • Han, Bin; Hu, Ke; Lai, Ning-An On the global well-posedness for the compressible Hall-MHD system, Journal of Mathematical Physics, Volume 65 (2024) no. 1 | DOI:10.1063/5.0175649
  • Fujii, Mikihiro Low Mach number limit of the global solution to the compressible Navier–Stokes system for large data in the critical Besov space, Mathematische Annalen, Volume 388 (2024) no. 4, p. 4083 | DOI:10.1007/s00208-023-02621-x
  • Liang, Min; Ou, Yaobin The low Mach number limit of non-isentropic magnetohydrodynamic equations with large temperature variations in bounded domains, Science China Mathematics, Volume 67 (2024) no. 4, p. 787 | DOI:10.1007/s11425-022-2127-3
  • Masmoudi, Nader; Rousset, Frédéric; Sun, Changzhen Incompressible limit for the free surface Navier-Stokes system, Annals of PDE, Volume 9 (2023) no. 1 | DOI:10.1007/s40818-023-00148-7
  • Liang, Min; Ou, Yaobin Convergence rate of fully compressible Navier-Stokes equations in three-dimensional bounded domains, Discrete and Continuous Dynamical Systems - B, Volume 28 (2023) no. 3, p. 1673 | DOI:10.3934/dcdsb.2022142
  • Liu, Xin; Titi, Edriss S. Zero Mach number limit of the compressible primitive equations: Ill-prepared initial data, Journal of Differential Equations, Volume 356 (2023), p. 1 | DOI:10.1016/j.jde.2023.01.031
  • Liang, Min; Ou, Yaobin; Shi, Pan Singular limit of planar magnetohydrodynamic equations with vacuum free boundary, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 13, p. 14457 | DOI:10.1002/mma.9331
  • Yang, Jianwei; Yang, Xiao; Yang, Jianqin; Shi, Qihong On the low Mach number limit of the compressible viscous micropolar fluid model, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 6, p. 7029 | DOI:10.1002/mma.8953
  • Jang, Juhi; Kukavica, Igor; Li, Linfeng Mach limits in analytic spaces on exterior domains, Discrete and Continuous Dynamical Systems, Volume 42 (2022) no. 8, p. 3629 | DOI:10.3934/dcds.2022027
  • Masmoudi, Nader; Rousset, Frédéric; Sun, Changzhen Uniform regularity for the compressible Navier-Stokes system with low Mach number in domains with boundaries, Journal de Mathématiques Pures et Appliquées, Volume 161 (2022), p. 166 | DOI:10.1016/j.matpur.2022.03.004
  • Bai, Xiang; Khor, Calvin The combined quasineutral and incompressible limit for the Navier–Stokes–Poisson system in critical spaces, Journal of Differential Equations, Volume 326 (2022), p. 280 | DOI:10.1016/j.jde.2022.04.019
  • Mu, Pengcheng Singular limits of the Cauchy problem to the two-layer rotating shallow water equations, Journal of Differential Equations, Volume 289 (2021), p. 59 | DOI:10.1016/j.jde.2021.04.014
  • Jang, Juhi; Kukavica, Igor; Li, Linfeng Mach limits in analytic spaces, Journal of Differential Equations, Volume 299 (2021), p. 284 | DOI:10.1016/j.jde.2021.07.014
  • Scrobogna, Stefano Zero limit of entropic relaxation time for the Shliomis model of ferrofluids, Journal of Mathematical Analysis and Applications, Volume 501 (2021) no. 2, p. 125213 | DOI:10.1016/j.jmaa.2021.125213
  • Ou, Yaobin Low Mach and Low Froude Number Limit for Vacuum Free Boundary Problem of All-time Classical Solutions of one-dimensional Compressible Navier–Stokes Equations, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 3, p. 3265 | DOI:10.1137/14m1191769
  • Liu, Xin; Titi, Edriss S. Zero Mach Number Limit of the Compressible Primitive Equations: Well-Prepared Initial Data, Archive for Rational Mechanics and Analysis, Volume 238 (2020) no. 2, p. 705 | DOI:10.1007/s00205-020-01553-z
  • Ren, Dandan; Ding, Yunting; Liang, Xinfeng Low Mach number limit for the compressible Navier–Stokes equations with density-dependent viscosity and vorticity-slip boundary condition, Boundary Value Problems, Volume 2020 (2020) no. 1 | DOI:10.1186/s13661-020-01455-9
  • Haspot, Boris Fujita–Kato solution for compressible Navier–Stokes equations with axisymmetric initial data and zero Mach number limit, Communications in Contemporary Mathematics, Volume 22 (2020) no. 05, p. 1950041 | DOI:10.1142/s021919971950041x
  • Han, Bin; Zi, Ruizhao Dispersive effect and global well-posedness of the compressible viscoelastic fluids, Journal of Differential Equations, Volume 269 (2020) no. 11, p. 9254 | DOI:10.1016/j.jde.2020.06.059
  • Yang, Jianwei; Cheng, Peng Low Mach number limit of compressible two-fluid model, Zeitschrift für angewandte Mathematik und Physik, Volume 71 (2020) no. 1 | DOI:10.1007/s00033-019-1233-9
  • Jin, Yan; Chen, Kang Ping Fundamental equations for primary fluid recovery from porous media, Journal of Fluid Mechanics, Volume 860 (2019), p. 300 | DOI:10.1017/jfm.2018.874
  • Calgaro, Caterina; Colin, Claire; Creusé, Emmanuel; Zahrouni, Ezzeddine Approximation by an iterative method of a low‐Mach model with temperature dependent viscosity, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 1, p. 250 | DOI:10.1002/mma.5342
  • Pan, Xinghong; Zhu, Lu The combined quasineutral and low Mach number limit of the Navier–Stokes–Poisson system, Zeitschrift für angewandte Mathematik und Physik, Volume 70 (2019) no. 1 | DOI:10.1007/s00033-019-1073-7
  • Ngo, Van-Sang; Scrobogna, Stefano Dispersive effects of weakly compressible and fast rotating inviscid fluids, Discrete Continuous Dynamical Systems - A, Volume 38 (2018) no. 2, p. 749 | DOI:10.3934/dcds.2018033
  • Danchin, Raphaël Fourier Analysis Methods for the Compressible Navier-Stokes Equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 1843 | DOI:10.1007/978-3-319-13344-7_49
  • Jiang, Ning; Masmoudi, Nader Low Mach Number Limits and Acoustic Waves, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 2721 | DOI:10.1007/978-3-319-13344-7_69
  • Bie, Qunyi; Wang, Qiru; Yao, Zheng-an Optimal Decay Rate for the Compressible Flow of Liquid Crystals in Lp L p Type Critical Spaces, Journal of Mathematical Fluid Mechanics, Volume 20 (2018) no. 4, p. 1707 | DOI:10.1007/s00021-018-0386-1
  • Li, Yeping; Zhou, Gang; Liao, Jie Zero‐electron‐mass limit of the two‐dimensional compressible Navier‐Stokes‐Poisson equations in bounded domain, Mathematical Methods in the Applied Sciences, Volume 41 (2018) no. 18, p. 9485 | DOI:10.1002/mma.5307
  • Pan, Xinghong; Zhu, Lu The incompressible limit for compressible MHD equations inLptype critical spaces, Nonlinear Analysis, Volume 170 (2018), p. 21 | DOI:10.1016/j.na.2017.12.015
  • Fang, Daoyuan; Zhang, Ting; Zi, Ruizhao Global Solutions to the Isentropic Compressible Navier–Stokes Equations with a Class of Large Initial Data, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 5, p. 4983 | DOI:10.1137/17m1122062
  • Danchin, Raphaël; Mucha, Piotr Bogusław Compressible Navier–Stokes system: Large solutions and incompressible limit, Advances in Mathematics, Volume 320 (2017), p. 904 | DOI:10.1016/j.aim.2017.09.025
  • Jiang, Ning; Masmoudi, N. Low Mach Number Limits and Acoustic Waves, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2017), p. 1 | DOI:10.1007/978-3-319-10151-4_69-1
  • Bie, Qunyi; Wang, Qiru; Yao, Zheng-an Optimal decay rate for the compressible Navier–Stokes–Poisson system in the critical L framework, Journal of Differential Equations, Volume 263 (2017) no. 12, p. 8391 | DOI:10.1016/j.jde.2017.08.041
  • Li, Fucai; Mu, Yanmin; Wang, Dehua Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces, Kinetic Related Models, Volume 10 (2017) no. 3, p. 741 | DOI:10.3934/krm.2017030
  • Su, Jingrui Low Mach number limit of a compressible micropolar fluid model, Nonlinear Analysis: Real World Applications, Volume 38 (2017), p. 21 | DOI:10.1016/j.nonrwa.2017.04.005
  • Bie, Qunyi; Cui, Haibo; Wang, Qiru; Yao, Zheng-An Global existence and incompressible limit in critical spaces for compressible flow of liquid crystals, Zeitschrift für angewandte Mathematik und Physik, Volume 68 (2017) no. 5 | DOI:10.1007/s00033-017-0862-0
  • Danchin, Raphaël Fourier Analysis Methods for the Compressible Navier-Stokes Equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_49-1
  • Danchin, Raphaël; He, Lingbing The incompressible limit in Lp L p type critical spaces, Mathematische Annalen, Volume 366 (2016) no. 3-4, p. 1365 | DOI:10.1007/s00208-016-1361-x
  • Su, Jingrui Incompressible limit of a compressible micropolar fluid model with general initial data, Nonlinear Analysis, Volume 132 (2016), p. 1 | DOI:10.1016/j.na.2015.10.020
  • Danchin, Raphaël; Ducomet, Bernard The Low Mach Number Limit for a Barotropic Model of Radiative Flow, SIAM Journal on Mathematical Analysis, Volume 48 (2016) no. 2, p. 1025 | DOI:10.1137/15m1009081
  • Zatorska, Ewelina; Haspot, Boris From the highly compressible Navier-Stokes equations to the porous medium equation – rate of convergence, Discrete and Continuous Dynamical Systems, Volume 36 (2015) no. 6, p. 3107 | DOI:10.3934/dcds.2016.36.3107
  • Danchin, Raphaël; Ducomet, Bernard Résultats d’existence globale et limites asymptotiques pour un modèle de fluide radiatif, Séminaire Laurent Schwartz — EDP et applications (2015), p. 1 | DOI:10.5802/slsedp.67
  • Fang, Daoyuan; Zi, Ruizhao Incompressible limit of Oldroyd-B fluids in the whole space, Journal of Differential Equations, Volume 256 (2014) no. 7, p. 2559 | DOI:10.1016/j.jde.2014.01.017
  • Liao, Xian A Global Existence Result for a Zero Mach Number System, Journal of Mathematical Fluid Mechanics, Volume 16 (2014) no. 1, p. 77 | DOI:10.1007/s00021-013-0152-3
  • Mu, Yanmin Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces, Kinetic Related Models, Volume 7 (2014) no. 4, p. 739 | DOI:10.3934/krm.2014.7.739
  • Xu, Jiang; Zhang, Ting Zero-electron-mass limit of Euler-Poisson equations, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 10, p. 4743 | DOI:10.3934/dcds.2013.33.4743
  • Charve, Frédéric; Haspot, Boris On a Lagrangian method for the convergence from a non-local to a local Korteweg capillary fluid model, Journal of Functional Analysis, Volume 265 (2013) no. 7, p. 1264 | DOI:10.1016/j.jfa.2013.05.042
  • DANCHIN, RAPHAËL; LIAO, XIAN ON THE WELL-POSEDNESS OF THE FULL LOW MACH NUMBER LIMIT SYSTEM IN GENERAL CRITICAL BESOV SPACES, Communications in Contemporary Mathematics, Volume 14 (2012) no. 03, p. 1250022 | DOI:10.1142/s0219199712500228
  • Carles, Rémi; Danchin, Raphaël; Saut, Jean-Claude Madelung, Gross–Pitaevskii and Korteweg, Nonlinearity, Volume 25 (2012) no. 10, p. 2843 | DOI:10.1088/0951-7715/25/10/2843
  • Danchin, Raphaël A survey on Fourier analysis methods for solving the compressible Navier-Stokes equations, Science China Mathematics, Volume 55 (2012) no. 2, p. 245 | DOI:10.1007/s11425-011-4357-8
  • Ou, Yaobin Low Mach number limit of viscous polytropic fluid flows, Journal of Differential Equations, Volume 251 (2011) no. 8, p. 2037 | DOI:10.1016/j.jde.2011.07.009
  • Béthuel, Fabrice; Danchin, Raphaël; Smets, Didier On the linear wave regime of the Gross-Pitaevskii equation, Journal d'Analyse Mathématique, Volume 110 (2010) no. 1, p. 297 | DOI:10.1007/s11854-010-0008-1
  • Hsiao, Ling; Ju, Qiangchang; Li, Fucai The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data, Chinese Annals of Mathematics, Series B, Volume 30 (2009) no. 1, p. 17 | DOI:10.1007/s11401-008-0039-4
  • Ou, Yaobin Low Mach number limit for the non-isentropic Navier–Stokes equations, Journal of Differential Equations, Volume 246 (2009) no. 11, p. 4441 | DOI:10.1016/j.jde.2009.01.012
  • Ou, Yaobin Incompressible limits of the Navier–Stokes equations for all time, Journal of Differential Equations, Volume 247 (2009) no. 12, p. 3295 | DOI:10.1016/j.jde.2009.05.009
  • GIOVANGIGLI, VINCENT HIGHER ORDER ENTROPIES FOR COMPRESSIBLE FLUID MODELS, Mathematical Models and Methods in Applied Sciences, Volume 19 (2009) no. 01, p. 67 | DOI:10.1142/s021820250900336x
  • Molinet, Luc; Talhouk, Raafat Newtonian Limit for Weakly Viscoelastic Fluid Flows of Oldroyd Type, SIAM Journal on Mathematical Analysis, Volume 39 (2008) no. 5, p. 1577 | DOI:10.1137/070681259
  • Masmoudi, Nader Examples of Singular Limits in Hydrodynamics, Volume 3 (2007), p. 195 | DOI:10.1016/s1874-5717(07)80006-5
  • Gallagher, Isabelle; Saint-Raymond, Laure On the influence of the Earth's Rotation on Geophysical Flows, Volume 4 (2007), p. 201 | DOI:10.1016/s1874-5792(07)80009-7
  • Alazard, Thomas Some Recent Asymptotic Results in Fluid Mechanics, Analysis and Simulation of Fluid Dynamics (2006), p. 1 | DOI:10.1007/978-3-7643-7742-7_1
  • Alazard, Thomas Low Mach Number Limit of the Full Navier-Stokes Equations, Archive for Rational Mechanics and Analysis, Volume 180 (2006) no. 1, p. 1 | DOI:10.1007/s00205-005-0393-2
  • Kim, Hyunseok; Lee, Jihoon The Incompressible Limits of Viscous Polytropic Fluids with Zero Thermal Conductivity Coefficient, Communications in Partial Differential Equations, Volume 30 (2005) no. 8, p. 1169 | DOI:10.1080/03605300500257560
  • Danchin, Raphaël Low Mach number limit for viscous compressible flows, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 39 (2005) no. 3, p. 459 | DOI:10.1051/m2an:2005019
  • Dutrifoy, Alexandre Examples of dispersive effects in non-viscous rotating fluids, Journal de Mathématiques Pures et Appliquées, Volume 84 (2005) no. 3, p. 331 | DOI:10.1016/j.matpur.2004.09.007
  • Dutrifoy, Alexandre; Hmidi, Taoufik The incompressible limit of solutions of the two‐dimensional compressible Euler system with degenerating initial data, Communications on Pure and Applied Mathematics, Volume 57 (2004) no. 9, p. 1159 | DOI:10.1002/cpa.20026

Cité par 68 documents. Sources : Crossref