@article{ASENS_2006_4_39_1_75_0, author = {Gu\`es, C. M. I. Olivier and M\'etivier, Guy and Williams, Mark and Zumbrun, Kevin}, title = {Navier-Stokes regularization of multidimensional {Euler} shocks}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {75--175}, publisher = {Elsevier}, volume = {Ser. 4, 39}, number = {1}, year = {2006}, doi = {10.1016/j.ansens.2005.12.002}, zbl = {05037727}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.ansens.2005.12.002/} }
TY - JOUR AU - Guès, C. M. I. Olivier AU - Métivier, Guy AU - Williams, Mark AU - Zumbrun, Kevin TI - Navier-Stokes regularization of multidimensional Euler shocks JO - Annales scientifiques de l'École Normale Supérieure PY - 2006 SP - 75 EP - 175 VL - 39 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.ansens.2005.12.002/ DO - 10.1016/j.ansens.2005.12.002 LA - en ID - ASENS_2006_4_39_1_75_0 ER -
%0 Journal Article %A Guès, C. M. I. Olivier %A Métivier, Guy %A Williams, Mark %A Zumbrun, Kevin %T Navier-Stokes regularization of multidimensional Euler shocks %J Annales scientifiques de l'École Normale Supérieure %D 2006 %P 75-175 %V 39 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.ansens.2005.12.002/ %R 10.1016/j.ansens.2005.12.002 %G en %F ASENS_2006_4_39_1_75_0
Guès, C. M. I. Olivier; Métivier, Guy; Williams, Mark; Zumbrun, Kevin. Navier-Stokes regularization of multidimensional Euler shocks. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 1, pp. 75-175. doi : 10.1016/j.ansens.2005.12.002. http://archive.numdam.org/articles/10.1016/j.ansens.2005.12.002/
[1] Existence d'ondes de raréfaction pour des sytèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations 14 (1989) 173-230. | MR | Zbl
,[2] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. Paris 14 (1981) 209-246. | Numdam | MR | Zbl
,[3] Stability and Asymptotic Behavior of Differential Equations, D.C. Heath, Boston, 1965. | MR | Zbl
,[4] Introduction to the Theory of Linear Partial Differential Equations, North-Holland, Amsterdam, 1982. | MR | Zbl
, ,[5] Stability of step shocks, Phys. Fluids 5 (1962) 1181-1187. | MR | Zbl
,[6] Spectral stability of small shock waves, Arch. Rat. Mech. Anal. 164 (2002) 287-309. | MR | Zbl
, ,[7] The gap lemma and geometric criteria instability of viscous shock profiles, CPAM 51 (1998) 797-855. | MR | Zbl
, ,[8] The existence and limit behavior of the one-dimensional shock layer, Amer. J. Math. 73 (1951) 256-274. | MR | Zbl
,[9] Développements asymptotiques de solutions exactes de systèmes hyperboliques quasilinéaires, Asymp. Anal. 6 (1993) 241-270. | MR | Zbl
,[10] Multidimensional viscous shocks I: degenerate symmetrizers and long time stability, J. Amer. Math. Soc. 18 (2005) 61-120. | MR | Zbl
, , , ,[11] Multidimensional viscous shocks II: the small viscosity problem, Comm. Pure Appl. Math. 57 (2004) 141-218. | MR | Zbl
, , , ,[12] Existence and stability of multidimensional shock fronts in the vanishing viscosity limit, Arch. Rat. Mech. Anal. 175 (2004) 151-244. | MR | Zbl
, , , ,[13] Guès O., Métivier G., Williams M., Zumbrun K., Stability of noncharacteristic boundary layers for the compressible Navier-Stokes and MHD equations, in preparation.
[14] Guès O., Métivier G., Williams M., Zumbrun K., Viscous boundary value problems for symmetric systems with variable multiplicities, in preparation.
[15] Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rat. Mech. Anal. 95 (1986) 325-344. | MR | Zbl
,[16] Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Rat. Mech. Anal. 121 (1992) 235-265. | MR | Zbl
, ,[17] Curved shocks as viscous limits: a boundary problem approach, Indiana Univ. Math. J. 51 (2002) 421-450. | MR | Zbl
, ,[18] The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983. | Zbl
,[19] Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970) 277-298. | MR | Zbl
,[20] Perturbation Theory for Linear Operators, Springer, Berlin, 1985. | MR | Zbl
,[21] Kawashima S., Systems of hyperbolic-parabolic type with applications to the equations of magnetohydrodynamics, PhD thesis, Kyoto University, 1983.
[22] Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J. 14 (1985) 249-275. | MR | Zbl
, ,[23] On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math. J. (1988) 449-464. | MR | Zbl
, ,[24] Pointwise Green function bounds for shock profiles with degenerate viscosity, Arch. Rat. Mech. Anal. 169 (2003) 177-263. | MR | Zbl
, ,[25] Stable viscosity matrices for systems of conservation laws, J. Differential Equations 56 (1985) 229-262. | MR | Zbl
, ,[26] The Stability of Multidimensional Shock Fronts, Mem. Amer. Math. Soc., vol. 275, AMS, Providence, RI, 1983. | MR | Zbl
,[27] The Existence of Multidimensional Shock Fronts, Mem. Amer. Math. Soc., vol. 281, AMS, Providence, RI, 1983. | MR | Zbl
,[28] Stability of Multidimensional Shocks, in: Advances in the Theory of Shock Waves, Progress in Nonlinear PDE, vol. 47, Birkhäuser, Boston, 2001. | MR | Zbl
,[29] The block structure condition for symmetric hyperbolic systems, Bull. Lond. Math. Soc. 32 (2000) 689-702. | MR | Zbl
,[30] Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Amer. Math. Soc. 175 (826) (2005), vi+107 p. | MR | Zbl
, ,[31] Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems, Disc. Cont. Dyn. Syst. 11 (2004) 205-220. | MR | Zbl
, ,[32] Hyperbolic boundary value problems for symmetric systems with variable multiplicities, J. Differential Equations 211 (2005) 61-134. | MR | Zbl
, ,[33] Stable viscosities and shock profiles for systems of conservation laws, Trans. Amer. Math. Soc. 282 (1984) 749-763. | MR | Zbl
,[34] An Evans function approach to spectral stability of small-amplitude shock profiles, J. Disc. Cont. Dyn. Syst. 10 (2004) 885-924. | MR | Zbl
, ,[35] The Topology of Fibre Bundles, Princeton University Press, Princeton, NJ, 1951. | MR | Zbl
,[36] Multidimensional stability of planar viscous shock waves, in: Advances in the Theory of Shock Waves, Progress in Nonlinear PDE, vol. 47, Birkhäuser, Boston, 2001, pp. 304-516. | MR | Zbl
,[37] Stability of large-amplitude shock waves of compressible Navier-Stokes equations, with an appendix by H.K. Jenssen and G. Lyng, in: Handbook of Mathematical Fluid Dynamics, vol. 3, North-Holland, Amsterdam, 2004, pp. 311-533. | MR
,[38] Zumbrun K., Planar stability criteria for viscous shock waves of systems with real viscosity, in: Hyperbolic Systems of Balance Laws, Springer Lecture Notes, 2006, in press.
[39] Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J. 48 (1999) 937-992. | MR | Zbl
, ,Cité par Sources :