From triangulated categories to cluster algebras II
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 6, pp. 983-1009.
DOI : 10.1016/j.ansens.2006.09.003
Caldero, Philippe 1 ; Keller, Bernhard 

1 Université Claude Bernard Lyon I, Département de mathématiques, 69622 Villeurbanne Cedex (France)
@article{ASENS_2006_4_39_6_983_0,
     author = {Caldero, Philippe and Keller, Bernhard},
     title = {From triangulated categories to cluster algebras {II}},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {983--1009},
     publisher = {Elsevier},
     volume = {Ser. 4, 39},
     number = {6},
     year = {2006},
     doi = {10.1016/j.ansens.2006.09.003},
     mrnumber = {2316979},
     zbl = {05149415},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.ansens.2006.09.003/}
}
TY  - JOUR
AU  - Caldero, Philippe
AU  - Keller, Bernhard
TI  - From triangulated categories to cluster algebras II
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2006
SP  - 983
EP  - 1009
VL  - 39
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.ansens.2006.09.003/
DO  - 10.1016/j.ansens.2006.09.003
LA  - en
ID  - ASENS_2006_4_39_6_983_0
ER  - 
%0 Journal Article
%A Caldero, Philippe
%A Keller, Bernhard
%T From triangulated categories to cluster algebras II
%J Annales scientifiques de l'École Normale Supérieure
%D 2006
%P 983-1009
%V 39
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.ansens.2006.09.003/
%R 10.1016/j.ansens.2006.09.003
%G en
%F ASENS_2006_4_39_6_983_0
Caldero, Philippe; Keller, Bernhard. From triangulated categories to cluster algebras II. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 6, pp. 983-1009. doi : 10.1016/j.ansens.2006.09.003. https://www.numdam.org/articles/10.1016/j.ansens.2006.09.003/

[1] Bondal A.I., Kapranov M.M., Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (6) (1989) 1183-1205, 1337. | MR | Zbl

[2] Brenner S., Butler M.C.R., The equivalence of certain functors occurring in the representation theory of Artin algebras and species, J. LMS 14 (1) (1976) 183-187. | MR | Zbl

[3] Buan A.B., Marsh R.J., Reiten I., Cluster tilted algebras, Trans. Amer. Math. Soc. 359 (2007) 323-332. | MR | Zbl

[4] Buan A.B., Marsh R.J., Reiten I., Cluster mutation via quiver representations, Comment. Math. Helv., submitted for publication, math.RT/0412077.

[5] Buan A.B., Marsh R.J., Reiten I., Todorov G., Clusters and seeds in acyclic cluster algebras. Appendix by A.B. Buan, R.J. Marsh, P. Caldero, B. Keller, I. Reiten, and G. Todorov, Proc. Amer. Math. Soc., submitted for publication, math.RT/0510359.

[6] Buan A.B., Marsh R.J., Reineke M., Reiten I., Todorov G., Tilting theory and cluster combinatorics, Adv. Math., submitted for publication, math.RT/0402054. | MR | Zbl

[7] Caldero P., Chapoton F., Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006) 595-616, math.RT/0410184. | MR | Zbl

[8] Caldero P., Chapoton F., Schiffler R., Quivers with relations arising from clusters (An case), Trans. Amer. Math. Soc. 358 (2006) 1347-1364. | MR | Zbl

[9] Caldero P., Chapoton F., Schiffler R., Quivers with relations and cluster tilted algebras, J. Alg. and Rep. Th., submitted for publication, math.RT/0411238. | MR | Zbl

[10] Caldero P., Keller B., From triangulated categories to cluster algebras, Invent. Math., submitted for publication, math.RT/0506018. | Zbl

[11] Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2) (2002) 497-529. | MR | Zbl

[12] Fomin S., Zelevinsky A., Cluster algebras. II. Finite type classification, Invent. Math. 154 (1) (2003) 63-121. | MR | Zbl

[13] Fomin S., Zelevinsky A., Cluster algebras: Notes for the CDM-03 conference, math.RT/0311493. | Zbl

[14] Geiss C., Leclerc B., Schröer J., Rigid modules over preprojective algebras, math.RT/0503324. | Zbl

[15] Happel D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. | MR | Zbl

[16] Happel D., Rickard J., Schofield A., Piecewise hereditary algebras, London Math. Soc. 20 (1988) 23-28. | MR | Zbl

[17] Hubery A., Acyclic cluster algebras via Ringel-Hall algebras, Preprint available at the author's homepage.

[18] Keller B., Triangulated orbit categories, Doc. Math. 10 (2005) 551-581. | EuDML | MR | Zbl

[19] Keller B., Reiten I., Cluster tilted algebras are Gorenstein and stably Calabi-Yau, math.RT/0512471. | Zbl

[20] Sherman P., Zelevinsky A., Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J. 4 (4) (2004) 947-974, 982. | MR | Zbl

  • Kantarcı Oğuz, Ezgi; Yıldırım, Emine Cluster expansions: T-walks, labeled posets and matrix calculations, Journal of Algebra, Volume 669 (2025), p. 183 | DOI:10.1016/j.jalgebra.2025.01.024
  • Liu, Siyang; Pan, Jie A Note on Mutation Equivalence, Mathematics, Volume 13 (2025) no. 3, p. 339 | DOI:10.3390/math13030339
  • Labardini-Fragoso, Daniel; Mou, Lang Gentle Algebras Arising from Surfaces with Orbifold Points of Order 3, Part I: Scattering Diagrams, Algebras and Representation Theory, Volume 27 (2024) no. 1, p. 679 | DOI:10.1007/s10468-023-10233-x
  • Fosse, Didrik Quipu Quivers and Nakayama Algebras with Almost Separate Relations, Algebras and Representation Theory, Volume 27 (2024) no. 1, p. 995 | DOI:10.1007/s10468-023-10247-5
  • Crawley-Boevey, William Rigid integral representations of quivers over arbitrary commutative rings, Annals of Representation Theory, Volume 1 (2024) no. 3, p. 375 | DOI:10.5802/art.15
  • Xiao, Jie; Xu, Fan; Yang, Fang Motivic Cluster Multiplication Formulas in 2-Calabi–Yau Categories, International Mathematics Research Notices, Volume 2024 (2024) no. 21, p. 13785 | DOI:10.1093/imrn/rnae220
  • Jørgensen, Peter; Shah, Amit The Index With Respect to a Rigid Subcategory of a Triangulated Category, International Mathematics Research Notices, Volume 2024 (2024) no. 4, p. 3278 | DOI:10.1093/imrn/rnad130
  • Yurikusa, Toshiya Denominator vectors and dimension vectors from triangulated surfaces, Journal of Algebra, Volume 641 (2024), p. 620 | DOI:10.1016/j.jalgebra.2023.12.002
  • Jørgensen, Peter; Shah, Amit Grothendieck groups of d-exangulated categories and a modified Caldero-Chapoton map, Journal of Pure and Applied Algebra, Volume 228 (2024) no. 5, p. 107587 | DOI:10.1016/j.jpaa.2023.107587
  • Mou, Lang Locally free Caldero–Chapoton functions via reflections, Mathematische Zeitschrift, Volume 307 (2024) no. 1 | DOI:10.1007/s00209-024-03483-y
  • Lorscheid, Oliver; Weist, Thorsten Quiver Grassmannians of Type D~n, Part 2: Schubert Decompositions and F-polynomials, Algebras and Representation Theory, Volume 26 (2023) no. 2, p. 359 | DOI:10.1007/s10468-021-10097-z
  • Lee, Kyu-Hwan; Yu, Jeongwoo Rigid Reflections of Rank 3 Coxeter Groups and Reduced Roots of Rank 2 Kac–Moody Algebras, Algebras and Representation Theory, Volume 26 (2023) no. 5, p. 1465 | DOI:10.1007/s10468-022-10143-4
  • Fu, Changjian; Geng, Shengfei On Maximal Green Sequence for Quivers Arising from Weighted Projective Lines, Algebras and Representation Theory, Volume 26 (2023) no. 5, p. 1713 | DOI:10.1007/s10468-022-10152-3
  • Werth, Heather Anna Computation of extension spaces for the path algebra of type Ã(n - 1,1) using planar curves, Communications in Algebra, Volume 51 (2023) no. 6, p. 2573 | DOI:10.1080/00927872.2023.2166519
  • Chen, Xueqing; Ding, Ming; Zhang, Haicheng The Cluster Multiplication Theorem for Acyclic Quantum Cluster Algebras, International Mathematics Research Notices, Volume 2023 (2023) no. 23, p. 20533 | DOI:10.1093/imrn/rnad172
  • Baur, Karin; Nasr-Isfahani, Alireza Cluster algebras generated by projective cluster variables, Journal of Algebra, Volume 627 (2023), p. 1 | DOI:10.1016/j.jalgebra.2023.02.027
  • Booker-Price, Thomas Classification of graded cluster algebras generated by rank 3 quivers, Journal of Algebra and Its Applications, Volume 22 (2023) no. 02 | DOI:10.1142/s0219498823500354
  • From Frieze Patterns to Cluster Categories, Modern Trends in Algebra and Representation Theory (2023), p. 109 | DOI:10.1017/9781009093750.005
  • τ-tilting Theory – an Introduction, Modern Trends in Algebra and Representation Theory (2023), p. 46 | DOI:10.1017/9781009093750.004
  • PRESSLAND, MATTHEW A CATEGORIFICATION OF ACYCLIC PRINCIPAL COEFFICIENT CLUSTER ALGEBRAS, Nagoya Mathematical Journal, Volume 252 (2023), p. 769 | DOI:10.1017/nmj.2023.6
  • Fu, Changjian; Peng, Liangang; Zhang, Haicheng Quantum cluster characters of Hall algebras revisited, Selecta Mathematica, Volume 29 (2023) no. 1 | DOI:10.1007/s00029-022-00811-0
  • Borges, Fernando; Pierin, Tanise Carnieri A Cluster Character with Coefficients for Cluster Category, Algebras and Representation Theory, Volume 25 (2022) no. 1, p. 211 | DOI:10.1007/s10468-020-10016-8
  • Ding, Ming; Xu, Fan; Chen, Xueqing Atomic bases of quantum cluster algebras of typeA˜2n−1,1, Journal of Algebra, Volume 590 (2022), p. 1 | DOI:10.1016/j.jalgebra.2021.10.001
  • Pallister, Joe A~ and D~ type cluster algebras: triangulated surfaces and friezes, Journal of Algebraic Combinatorics, Volume 56 (2022) no. 4, p. 1163 | DOI:10.1007/s10801-022-01152-z
  • An, Byung Hee; Lee, Eunjeong On folded cluster patterns of affine type, Pacific Journal of Mathematics, Volume 318 (2022) no. 2, p. 401 | DOI:10.2140/pjm.2022.318.401
  • Huang, Min An expansion formula for quantum cluster algebras from unpunctured triangulated surfaces, Selecta Mathematica, Volume 28 (2022) no. 2 | DOI:10.1007/s00029-021-00750-2
  • Huang, Min Positivity for quantum cluster algebras from unpunctured orbifolds, Transactions of the American Mathematical Society (2022) | DOI:10.1090/tran/8819
  • Cerulli Irelli, Giovanni; Esposito, Francesco; Franzen, Hans; Reineke, Markus Cell decompositions and algebraicity of cohomology for quiver Grassmannians, Advances in Mathematics, Volume 379 (2021), p. 107544 | DOI:10.1016/j.aim.2020.107544
  • Lee, Kyu-Hwan; Lee, Kyungyong A Correspondence between Rigid Modules Over Path Algebras and Simple Curves on Riemann Surfaces, Experimental Mathematics, Volume 30 (2021) no. 3, p. 315 | DOI:10.1080/10586458.2018.1538910
  • Buan, Aslak Bakke; Marsh, Bethany Rose τ-exceptional sequences, Journal of Algebra, Volume 585 (2021), p. 36 | DOI:10.1016/j.jalgebra.2021.04.038
  • Lee, Kyungyong; Li, Li; Mills, Matthew; Schiffler, Ralf; Seceleanu, Alexandra Frieze varieties: A characterization of the finite-tame-wild trichotomy for acyclic quivers, Advances in Mathematics, Volume 367 (2020), p. 107130 | DOI:10.1016/j.aim.2020.107130
  • Rupel, Dylan; Stella, Salvatore; Williams, Harold On Generalized Minors and Quiver Representations, International Mathematics Research Notices, Volume 2020 (2020) no. 3, p. 914 | DOI:10.1093/imrn/rny053
  • Geng, Shengfei Mutation of tilting bundles of tubular type, Journal of Algebra, Volume 550 (2020), p. 186 | DOI:10.1016/j.jalgebra.2019.12.030
  • Cao, Peigen; Li, Fang The enough g-pairs property and denominator vectors of cluster algebras, Mathematische Annalen, Volume 377 (2020) no. 3-4, p. 1547 | DOI:10.1007/s00208-020-02033-1
  • Geiß, Christof; Leclerc, Bernard; Schröer, Jan Rigid modules and Schur roots, Mathematische Zeitschrift, Volume 295 (2020) no. 3-4, p. 1245 | DOI:10.1007/s00209-019-02396-5
  • Rupel, Dylan; Weist, Thorsten Cell decompositions for rank two quiver Grassmannians, Mathematische Zeitschrift, Volume 295 (2020) no. 3-4, p. 993 | DOI:10.1007/s00209-019-02379-6
  • Garcia Elsener, Ana; Lampe, Philipp; Smertnig, Daniel Factoriality and class groups of cluster algebras, Advances in Mathematics, Volume 358 (2019), p. 106858 | DOI:10.1016/j.aim.2019.106858
  • Yurikusa, Toshiya Cluster Expansion Formulas in Type A, Algebras and Representation Theory, Volume 22 (2019) no. 1, p. 1 | DOI:10.1007/s10468-017-9755-3
  • Felikson, Anna; Tumarkin, Pavel Geometry of Mutation Classes of Rank 3 Quivers, Arnold Mathematical Journal, Volume 5 (2019) no. 1, p. 37 | DOI:10.1007/s40598-019-00101-2
  • Rupel, Dylan; Stella, Salvatore; Williams, Harold Affine cluster monomials are generalized minors, Compositio Mathematica, Volume 155 (2019) no. 7, p. 1301 | DOI:10.1112/s0010437x19007292
  • Fu, Changjian; Geng, Shengfei On indecomposable τ-rigid modules for cluster-tilted algebras of tame type, Journal of Algebra, Volume 531 (2019), p. 249 | DOI:10.1016/j.jalgebra.2019.04.024
  • Bai, Liqian; Chen, Xueqing; Ding, Ming; Xu, Fan Cluster multiplication theorem in the quantum cluster algebra of type A2(2) and the triangular basis, Journal of Algebra, Volume 533 (2019), p. 106 | DOI:10.1016/j.jalgebra.2019.05.028
  • Serhiyenko, K.; Sherman‐Bennett, M.; Williams, L. Cluster structures in Schubert varieties in the Grassmannian, Proceedings of the London Mathematical Society, Volume 119 (2019) no. 6, p. 1694 | DOI:10.1112/plms.12281
  • Felikson, Anna; Tumarkin, Pavel Acyclic cluster algebras, reflection groups, and curves on a punctured disc, Advances in Mathematics, Volume 340 (2018), p. 855 | DOI:10.1016/j.aim.2018.10.020
  • Plamondon, Pierre-Guy Cluster Characters, Homological Methods, Representation Theory, and Cluster Algebras (2018), p. 101 | DOI:10.1007/978-3-319-74585-5_4
  • Cao, Peigen; Li, Fang Some conjectures on generalized cluster algebras via the cluster formula and D-matrix pattern, Journal of Algebra, Volume 493 (2018), p. 57 | DOI:10.1016/j.jalgebra.2017.08.034
  • Cao, Peigen; Li, Fang Positivity of denominator vectors of skew-symmetric cluster algebras, Journal of Algebra, Volume 515 (2018), p. 448 | DOI:10.1016/j.jalgebra.2018.09.004
  • Lawson, John W.; Mills, Matthew R. Properties of minimal mutation-infinite quivers, Journal of Combinatorial Theory, Series A, Volume 155 (2018), p. 122 | DOI:10.1016/j.jcta.2017.11.004
  • Lawson, John W. Minimal Mutation-Infinite Quivers, Experimental Mathematics, Volume 26 (2017) no. 3, p. 308 | DOI:10.1080/10586458.2016.1166353
  • Glick, Max; Rupel, Dylan Introduction to Cluster Algebras, Symmetries and Integrability of Difference Equations (2017), p. 325 | DOI:10.1007/978-3-319-56666-5_7
  • Chen, Xueqing; Ding, Ming; Xu, Fan Positivity for Generalized Cluster Variables of Affine Quivers, Algebras and Representation Theory, Volume 19 (2016) no. 6, p. 1495 | DOI:10.1007/s10468-016-9629-0
  • Holm, Thorsten; Jørgensen, Peter Generalised friezes and a modified Caldero–Chapoton map depending on a rigid object, II, Bulletin des Sciences Mathématiques, Volume 140 (2016) no. 4, p. 112 | DOI:10.1016/j.bulsci.2015.05.001
  • Williams, Harold Toda Systems, Cluster Characters, and Spectral Networks, Communications in Mathematical Physics, Volume 348 (2016) no. 1, p. 145 | DOI:10.1007/s00220-016-2692-x
  • Reading, Nathan; Speyer, David E. Combinatorial Frameworks for Cluster Algebras, International Mathematics Research Notices, Volume 2016 (2016) no. 1, p. 109 | DOI:10.1093/imrn/rnv101
  • Marsh, Bethany R.; Reiten, Idun Rigid and Schurian modules over cluster-tilted algebras of tame type, Mathematische Zeitschrift, Volume 284 (2016) no. 3-4, p. 643 | DOI:10.1007/s00209-016-1668-z
  • Chen, Xinhong; Geng, Shengfei; Lu, Ming The Singularity Categories of the Cluster-Tilted Algebras of Dynkin Type, Algebras and Representation Theory, Volume 18 (2015) no. 2, p. 531 | DOI:10.1007/s10468-014-9507-6
  • Ndouné, Ndouné On Involutive Cluster Automorphisms, Communications in Algebra, Volume 43 (2015) no. 5, p. 2029 | DOI:10.1080/00927872.2013.876235
  • Ding, Ming; Sheng, Jie; Chen, Xueqing Multiplicative properties of a quantum Caldero–Chapoton map associated to valued quivers, Journal of Algebra, Volume 442 (2015), p. 299 | DOI:10.1016/j.jalgebra.2015.02.005
  • Holm, Thorsten; Jørgensen, Peter Generalized friezes and a modified Caldero–Chapoton map depending on a rigid object, Nagoya Mathematical Journal, Volume 218 (2015), p. 101 | DOI:10.1215/00277630-2891495
  • Williams, H. Cluster characters and the combinatorics of Toda systems, Theoretical and Mathematical Physics, Volume 185 (2015) no. 3, p. 1789 | DOI:10.1007/s11232-015-0379-7
  • Rupel, Dylan Quantum cluster characters for valued quivers, Transactions of the American Mathematical Society, Volume 367 (2015) no. 10, p. 7061 | DOI:10.1090/s0002-9947-2015-06251-5
  • Williams, Harold Характеры кластеров и комбинаторика систем Тоды, Теоретическая и математическая физика, Volume 185 (2015) no. 3, p. 495 | DOI:10.4213/tmf8892
  • Adachi, Takahide; Iyama, Osamu; Reiten, Idun -tilting theory, Compositio Mathematica, Volume 150 (2014) no. 3, p. 415 | DOI:10.1112/s0010437x13007422
  • Berenstein, Arkady; Zelevinsky, Andrei Triangular Bases in Quantum Cluster Algebras, International Mathematics Research Notices, Volume 2014 (2014) no. 6, p. 1651 | DOI:10.1093/imrn/rns268
  • Felikson, Anna; Shapiro, Michael; Thomas, Hugh; Tumarkin, Pavel Growth rate of cluster algebras, Proceedings of the London Mathematical Society, Volume 109 (2014) no. 3, p. 653 | DOI:10.1112/plms/pdu010
  • Iyama, Osamu; Reiten, Idun Introduction to τ-tilting theory, Proceedings of the National Academy of Sciences, Volume 111 (2014) no. 27, p. 9704 | DOI:10.1073/pnas.1313075111
  • Lee, Kyungyong; Li, Li; Rupel, Dylan; Zelevinsky, Andrei Greedy bases in rank 2 quantum cluster algebras, Proceedings of the National Academy of Sciences, Volume 111 (2014) no. 27, p. 9712 | DOI:10.1073/pnas.1313078111
  • Reiten, Idun Dynkin and Extended Dynkin Diagrams, Trends in Contemporary Mathematics, Volume 8 (2014), p. 181 | DOI:10.1007/978-3-319-05254-0_14
  • Speyer, David; Thomas, Hugh Acyclic Cluster Algebras Revisited, Algebras, Quivers and Representations, Volume 8 (2013), p. 275 | DOI:10.1007/978-3-642-39485-0_12
  • Cerulli Irelli, Giovanni; Keller, Bernhard; Labardini-Fragoso, Daniel; Plamondon, Pierre-Guy Linear independence of cluster monomials for skew-symmetric cluster algebras, Compositio Mathematica, Volume 149 (2013) no. 10, p. 1753 | DOI:10.1112/s0010437x1300732x
  • Guo, L. On Tropical Friezes Associated with Dynkin Diagrams, International Mathematics Research Notices, Volume 2013 (2013) no. 18, p. 4243 | DOI:10.1093/imrn/rns176
  • Shunhua, Zhang; Yuehui, Zhang Repetitive cluster-tilted algebras, Acta Mathematica Scientia, Volume 32 (2012) no. 4, p. 1449 | DOI:10.1016/s0252-9602(12)60114-3
  • Geng, Shengfei; Peng, Liangang The dimension vectors of indecomposable modules of cluster-tilted algebras and the Fomin-Zelevinsky denominators conjecture, Acta Mathematica Sinica, English Series, Volume 28 (2012) no. 3, p. 581 | DOI:10.1007/s10114-012-9389-7
  • Ding, Ming; Xu, Fan A ℤ-Basis for the Cluster Algebra of Type D~4, Algebra Colloquium, Volume 19 (2012) no. 04, p. 591 | DOI:10.1142/s1005386712000466
  • Cerulli Irelli, Giovanni Cluster Algebras of Type A 2(1), Algebras and Representation Theory, Volume 15 (2012) no. 5, p. 977 | DOI:10.1007/s10468-011-9275-5
  • Lee, Kyungyong On Cluster Variables of Rank Two Acyclic Cluster Algebras, Annals of Combinatorics, Volume 16 (2012) no. 2, p. 305 | DOI:10.1007/s00026-012-0134-9
  • Seven, Ahmet I. Mutation Classes of 3×3 Generalized Cartan Matrices, Highlights in Lie Algebraic Methods, Volume 295 (2012), p. 205 | DOI:10.1007/978-0-8176-8274-3_9
  • Qin, Fan; Keller, Bernhard Quantum cluster variables via Serre polynomials, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2012 (2012) no. 668 | DOI:10.1515/crelle.2011.129
  • Seven, Ahmet Mutation classes of skew-symmetrizable 3×3 matrices, Proceedings of the American Mathematical Society, Volume 141 (2012) no. 5, p. 1493 | DOI:10.1090/s0002-9939-2012-11477-7
  • Ding, Ming; Xu, Fan A quantum analogue of generic bases for affine cluster algebras, Science China Mathematics, Volume 55 (2012) no. 10, p. 2045 | DOI:10.1007/s11425-012-4423-x
  • Plamondon, Pierre-Guy Cluster characters for cluster categories with infinite-dimensional morphism spaces, Advances in Mathematics, Volume 227 (2011) no. 1, p. 1 | DOI:10.1016/j.aim.2010.12.010
  • Musiker, Gregg; Schiffler, Ralf; Williams, Lauren Positivity for cluster algebras from surfaces, Advances in Mathematics, Volume 227 (2011) no. 6, p. 2241 | DOI:10.1016/j.aim.2011.04.018
  • Geiß, Christof; Leclerc, Bernard; Schröer, Jan Kac–Moody groups and cluster algebras, Advances in Mathematics, Volume 228 (2011) no. 1, p. 329 | DOI:10.1016/j.aim.2011.05.011
  • Keller, Bernhard; Scherotzke, Sarah Linear recurrence relations for cluster variables of affine quivers, Advances in Mathematics, Volume 228 (2011) no. 3, p. 1842 | DOI:10.1016/j.aim.2011.06.036
  • Cerulli Irelli, Giovanni; Esposito, Francesco Geometry of quiver Grassmannians of Kronecker type and applications to cluster algebras, Algebra Number Theory, Volume 5 (2011) no. 6, p. 777 | DOI:10.2140/ant.2011.5.777
  • Demonet, Laurent Categorification of Skew-symmetrizable Cluster Algebras, Algebras and Representation Theory, Volume 14 (2011) no. 6, p. 1087 | DOI:10.1007/s10468-010-9228-4
  • Hubery, Andrew The Cluster Complex of an Hereditary Artin Algebra, Algebras and Representation Theory, Volume 14 (2011) no. 6, p. 1163 | DOI:10.1007/s10468-010-9229-3
  • Zhu, Bin Cluster-Tilted Algebras and Their Intermediate Coverings, Communications in Algebra, Volume 39 (2011) no. 7, p. 2437 | DOI:10.1080/00927872.2010.489082
  • Keller, Bernhard Categorification of Acyclic Cluster Algebras: An Introduction, Higher Structures in Geometry and Physics, Volume 287 (2011), p. 227 | DOI:10.1007/978-0-8176-4735-3_11
  • Keller, B.; Scherotzke, S. The Integral Cluster Category, International Mathematics Research Notices (2011) | DOI:10.1093/imrn/rnr129
  • Zhou, Yu; Zhu, Bin Maximal rigid subcategories in 2-Calabi–Yau triangulated categories, Journal of Algebra, Volume 348 (2011) no. 1, p. 49 | DOI:10.1016/j.jalgebra.2011.09.027
  • Cerulli Irelli, G. Quiver Grassmannians associated with string modules, Journal of Algebraic Combinatorics, Volume 33 (2011) no. 2, p. 259 | DOI:10.1007/s10801-010-0244-6
  • Guo, Lingyan Cluster tilting objects in generalized higher cluster categories, Journal of Pure and Applied Algebra, Volume 215 (2011) no. 9, p. 2055 | DOI:10.1016/j.jpaa.2010.11.015
  • Nakajima, Hiraku Quiver varieties and cluster algebras, Kyoto Journal of Mathematics, Volume 51 (2011) no. 1 | DOI:10.1215/0023608x-2010-021
  • Savage, Alistair; Tingley, Peter Quiver grassmannians, quiver varieties and the preprojective algebra, Pacific Journal of Mathematics, Volume 251 (2011) no. 2, p. 393 | DOI:10.2140/pjm.2011.251.393
  • Barot, Michael; Fernández, Elsa; Platzeck, María Inés; Pratti, Nilda Isabel; Trepode, Sonia From iterated tilted algebras to cluster-tilted algebras, Advances in Mathematics, Volume 223 (2010) no. 4, p. 1468 | DOI:10.1016/j.aim.2009.10.004
  • Schiffler, Ralf On cluster algebras arising from unpunctured surfaces II, Advances in Mathematics, Volume 223 (2010) no. 6, p. 1885 | DOI:10.1016/j.aim.2009.10.015
  • Dupont, Grégoire Transverse quiver Grassmannians and bases in affine cluster algebras, Algebra Number Theory, Volume 4 (2010) no. 5, p. 599 | DOI:10.2140/ant.2010.4.599
  • Rupel, D. On a Quantum Analog of the Caldero-Chapoton Formula, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnq192
  • Buan, Aslak Bakke; Marsh, Bethany Rose Denominators in cluster algebras of affine type, Journal of Algebra, Volume 323 (2010) no. 8, p. 2083 | DOI:10.1016/j.jalgebra.2010.02.012
  • Musiker, Gregg; Schiffler, Ralf Cluster expansion formulas and perfect matchings, Journal of Algebraic Combinatorics, Volume 32 (2010) no. 2, p. 187 | DOI:10.1007/s10801-009-0210-3
  • Derksen, Harm; Weyman, Jerzy; Zelevinsky, Andrei Quivers with potentials and their representations II: Applications to cluster algebras, Journal of the American Mathematical Society, Volume 23 (2010) no. 3, p. 749 | DOI:10.1090/s0894-0347-10-00662-4
  • Buan, Aslak Bakke; Marsh, Bethany R.; Vatne, Dagfinn F. Cluster structures from 2-Calabi–Yau categories with loops, Mathematische Zeitschrift, Volume 265 (2010) no. 4, p. 951 | DOI:10.1007/s00209-009-0549-0
  • Inoue, Rei; Iyama, Osamu; Kuniba, Atsuo; Nakanishi, Tomoki; Suzuki, Junji Periodicities of T-systems and Y-systems, Nagoya Mathematical Journal, Volume 197 (2010), p. 59 | DOI:10.1215/00277630-2009-003
  • Seven, Ahmet Cluster algebras and semipositive symmetrizable matrices, Transactions of the American Mathematical Society, Volume 363 (2010) no. 5, p. 2733 | DOI:10.1090/s0002-9947-2010-05255-9
  • Buan, Aslak Bakke; Thomas, Hugh Coloured quiver mutation for higher cluster categories, Advances in Mathematics, Volume 222 (2009) no. 3, p. 971 | DOI:10.1016/j.aim.2009.05.017
  • Yang, Dong Clusters in Non-simply-laced Finite Type via Frobenius Morphisms, Algebra Colloquium, Volume 16 (2009) no. 01, p. 143 | DOI:10.1142/s1005386709000169
  • Buan, A. B.; Iyama, O.; Reiten, I.; Scott, J. Cluster structures for 2-Calabi–Yau categories and unipotent groups, Compositio Mathematica, Volume 145 (2009) no. 4, p. 1035 | DOI:10.1112/s0010437x09003960
  • Ingalls, Colin; Thomas, Hugh Noncrossing partitions and representations of quivers, Compositio Mathematica, Volume 145 (2009) no. 6, p. 1533 | DOI:10.1112/s0010437x09004023
  • Schiffler, R.; Thomas, H. On Cluster Algebras Arising from Unpunctured Surfaces, International Mathematics Research Notices (2009) | DOI:10.1093/imrn/rnp047
  • Zhou, Yu; Zhu, Bin Cluster combinatorics of d-cluster categories, Journal of Algebra, Volume 321 (2009) no. 10, p. 2898 | DOI:10.1016/j.jalgebra.2009.01.032
  • Iyama, Osamu; Yoshino, Yuji Mutation in triangulated categories and rigid Cohen–Macaulay modules, Inventiones mathematicae, Volume 172 (2008) no. 1, p. 117 | DOI:10.1007/s00222-007-0096-4
  • Buan, Aslak Bakke; Vatne, Dagfinn F. Derived equivalence classification for cluster-tilted algebras of typeAn, Journal of Algebra, Volume 319 (2008) no. 7, p. 2723 | DOI:10.1016/j.jalgebra.2008.01.007
  • Zhu, Bin Preprojective Cluster Variables of Acyclic Cluster Algebras, Communications in Algebra, Volume 35 (2007) no. 9, p. 2857 | DOI:10.1080/00927870701451334

Cité par 114 documents. Sources : Crossref