@article{ASENS_2006_4_39_6_983_0, author = {Caldero, Philippe and Keller, Bernhard}, title = {From triangulated categories to cluster algebras {II}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {983--1009}, publisher = {Elsevier}, volume = {Ser. 4, 39}, number = {6}, year = {2006}, doi = {10.1016/j.ansens.2006.09.003}, mrnumber = {2316979}, zbl = {05149415}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.ansens.2006.09.003/} }
TY - JOUR AU - Caldero, Philippe AU - Keller, Bernhard TI - From triangulated categories to cluster algebras II JO - Annales scientifiques de l'École Normale Supérieure PY - 2006 SP - 983 EP - 1009 VL - 39 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.ansens.2006.09.003/ DO - 10.1016/j.ansens.2006.09.003 LA - en ID - ASENS_2006_4_39_6_983_0 ER -
%0 Journal Article %A Caldero, Philippe %A Keller, Bernhard %T From triangulated categories to cluster algebras II %J Annales scientifiques de l'École Normale Supérieure %D 2006 %P 983-1009 %V 39 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.ansens.2006.09.003/ %R 10.1016/j.ansens.2006.09.003 %G en %F ASENS_2006_4_39_6_983_0
Caldero, Philippe; Keller, Bernhard. From triangulated categories to cluster algebras II. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 6, pp. 983-1009. doi : 10.1016/j.ansens.2006.09.003. https://www.numdam.org/articles/10.1016/j.ansens.2006.09.003/
[1] Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (6) (1989) 1183-1205, 1337. | MR | Zbl
, ,[2] The equivalence of certain functors occurring in the representation theory of Artin algebras and species, J. LMS 14 (1) (1976) 183-187. | MR | Zbl
, ,[3] Cluster tilted algebras, Trans. Amer. Math. Soc. 359 (2007) 323-332. | MR | Zbl
, , ,[4] Cluster mutation via quiver representations, Comment. Math. Helv., submitted for publication, math.RT/0412077.
, , ,[5] Clusters and seeds in acyclic cluster algebras. Appendix by A.B. Buan, R.J. Marsh, P. Caldero, B. Keller, I. Reiten, and G. Todorov, Proc. Amer. Math. Soc., submitted for publication, math.RT/0510359.
, , , ,[6] Tilting theory and cluster combinatorics, Adv. Math., submitted for publication, math.RT/0402054. | MR | Zbl
, , , , ,[7] Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006) 595-616, math.RT/0410184. | MR | Zbl
, ,
[8] Quivers with relations arising from clusters (
[9] Quivers with relations and cluster tilted algebras, J. Alg. and Rep. Th., submitted for publication, math.RT/0411238. | MR | Zbl
, , ,[10] From triangulated categories to cluster algebras, Invent. Math., submitted for publication, math.RT/0506018. | Zbl
, ,[11] Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2) (2002) 497-529. | MR | Zbl
, ,[12] Cluster algebras. II. Finite type classification, Invent. Math. 154 (1) (2003) 63-121. | MR | Zbl
, ,[13] Cluster algebras: Notes for the CDM-03 conference, math.RT/0311493. | Zbl
, ,[14] Rigid modules over preprojective algebras, math.RT/0503324. | Zbl
, , ,[15] Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. | MR | Zbl
,[16] Piecewise hereditary algebras, London Math. Soc. 20 (1988) 23-28. | MR | Zbl
, , ,[17] Hubery A., Acyclic cluster algebras via Ringel-Hall algebras, Preprint available at the author's homepage.
[18] Triangulated orbit categories, Doc. Math. 10 (2005) 551-581. | EuDML | MR | Zbl
,[19] Cluster tilted algebras are Gorenstein and stably Calabi-Yau, math.RT/0512471. | Zbl
, ,[20] Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J. 4 (4) (2004) 947-974, 982. | MR | Zbl
, ,- Cluster expansions: T-walks, labeled posets and matrix calculations, Journal of Algebra, Volume 669 (2025), p. 183 | DOI:10.1016/j.jalgebra.2025.01.024
- A Note on Mutation Equivalence, Mathematics, Volume 13 (2025) no. 3, p. 339 | DOI:10.3390/math13030339
- Gentle Algebras Arising from Surfaces with Orbifold Points of Order 3, Part I: Scattering Diagrams, Algebras and Representation Theory, Volume 27 (2024) no. 1, p. 679 | DOI:10.1007/s10468-023-10233-x
- Quipu Quivers and Nakayama Algebras with Almost Separate Relations, Algebras and Representation Theory, Volume 27 (2024) no. 1, p. 995 | DOI:10.1007/s10468-023-10247-5
- Rigid integral representations of quivers over arbitrary commutative rings, Annals of Representation Theory, Volume 1 (2024) no. 3, p. 375 | DOI:10.5802/art.15
- Motivic Cluster Multiplication Formulas in 2-Calabi–Yau Categories, International Mathematics Research Notices, Volume 2024 (2024) no. 21, p. 13785 | DOI:10.1093/imrn/rnae220
- The Index With Respect to a Rigid Subcategory of a Triangulated Category, International Mathematics Research Notices, Volume 2024 (2024) no. 4, p. 3278 | DOI:10.1093/imrn/rnad130
- Denominator vectors and dimension vectors from triangulated surfaces, Journal of Algebra, Volume 641 (2024), p. 620 | DOI:10.1016/j.jalgebra.2023.12.002
- Grothendieck groups of d-exangulated categories and a modified Caldero-Chapoton map, Journal of Pure and Applied Algebra, Volume 228 (2024) no. 5, p. 107587 | DOI:10.1016/j.jpaa.2023.107587
- Locally free Caldero–Chapoton functions via reflections, Mathematische Zeitschrift, Volume 307 (2024) no. 1 | DOI:10.1007/s00209-024-03483-y
- Quiver Grassmannians of Type
, Part 2: Schubert Decompositions and F-polynomials, Algebras and Representation Theory, Volume 26 (2023) no. 2, p. 359 | DOI:10.1007/s10468-021-10097-z - Rigid Reflections of Rank 3 Coxeter Groups and Reduced Roots of Rank 2 Kac–Moody Algebras, Algebras and Representation Theory, Volume 26 (2023) no. 5, p. 1465 | DOI:10.1007/s10468-022-10143-4
- On Maximal Green Sequence for Quivers Arising from Weighted Projective Lines, Algebras and Representation Theory, Volume 26 (2023) no. 5, p. 1713 | DOI:10.1007/s10468-022-10152-3
- Computation of extension spaces for the path algebra of type Ã(n - 1,1) using planar curves, Communications in Algebra, Volume 51 (2023) no. 6, p. 2573 | DOI:10.1080/00927872.2023.2166519
- The Cluster Multiplication Theorem for Acyclic Quantum Cluster Algebras, International Mathematics Research Notices, Volume 2023 (2023) no. 23, p. 20533 | DOI:10.1093/imrn/rnad172
- Cluster algebras generated by projective cluster variables, Journal of Algebra, Volume 627 (2023), p. 1 | DOI:10.1016/j.jalgebra.2023.02.027
- Classification of graded cluster algebras generated by rank 3 quivers, Journal of Algebra and Its Applications, Volume 22 (2023) no. 02 | DOI:10.1142/s0219498823500354
- From Frieze Patterns to Cluster Categories, Modern Trends in Algebra and Representation Theory (2023), p. 109 | DOI:10.1017/9781009093750.005
- τ-tilting Theory – an Introduction, Modern Trends in Algebra and Representation Theory (2023), p. 46 | DOI:10.1017/9781009093750.004
- A CATEGORIFICATION OF ACYCLIC PRINCIPAL COEFFICIENT CLUSTER ALGEBRAS, Nagoya Mathematical Journal, Volume 252 (2023), p. 769 | DOI:10.1017/nmj.2023.6
- Quantum cluster characters of Hall algebras revisited, Selecta Mathematica, Volume 29 (2023) no. 1 | DOI:10.1007/s00029-022-00811-0
- A Cluster Character with Coefficients for Cluster Category, Algebras and Representation Theory, Volume 25 (2022) no. 1, p. 211 | DOI:10.1007/s10468-020-10016-8
- Atomic bases of quantum cluster algebras of typeA˜2n−1,1, Journal of Algebra, Volume 590 (2022), p. 1 | DOI:10.1016/j.jalgebra.2021.10.001
-
and type cluster algebras: triangulated surfaces and friezes, Journal of Algebraic Combinatorics, Volume 56 (2022) no. 4, p. 1163 | DOI:10.1007/s10801-022-01152-z - On folded cluster patterns of affine type, Pacific Journal of Mathematics, Volume 318 (2022) no. 2, p. 401 | DOI:10.2140/pjm.2022.318.401
- An expansion formula for quantum cluster algebras from unpunctured triangulated surfaces, Selecta Mathematica, Volume 28 (2022) no. 2 | DOI:10.1007/s00029-021-00750-2
- Positivity for quantum cluster algebras from unpunctured orbifolds, Transactions of the American Mathematical Society (2022) | DOI:10.1090/tran/8819
- Cell decompositions and algebraicity of cohomology for quiver Grassmannians, Advances in Mathematics, Volume 379 (2021), p. 107544 | DOI:10.1016/j.aim.2020.107544
- A Correspondence between Rigid Modules Over Path Algebras and Simple Curves on Riemann Surfaces, Experimental Mathematics, Volume 30 (2021) no. 3, p. 315 | DOI:10.1080/10586458.2018.1538910
- τ-exceptional sequences, Journal of Algebra, Volume 585 (2021), p. 36 | DOI:10.1016/j.jalgebra.2021.04.038
- Frieze varieties: A characterization of the finite-tame-wild trichotomy for acyclic quivers, Advances in Mathematics, Volume 367 (2020), p. 107130 | DOI:10.1016/j.aim.2020.107130
- On Generalized Minors and Quiver Representations, International Mathematics Research Notices, Volume 2020 (2020) no. 3, p. 914 | DOI:10.1093/imrn/rny053
- Mutation of tilting bundles of tubular type, Journal of Algebra, Volume 550 (2020), p. 186 | DOI:10.1016/j.jalgebra.2019.12.030
- The enough g-pairs property and denominator vectors of cluster algebras, Mathematische Annalen, Volume 377 (2020) no. 3-4, p. 1547 | DOI:10.1007/s00208-020-02033-1
- Rigid modules and Schur roots, Mathematische Zeitschrift, Volume 295 (2020) no. 3-4, p. 1245 | DOI:10.1007/s00209-019-02396-5
- Cell decompositions for rank two quiver Grassmannians, Mathematische Zeitschrift, Volume 295 (2020) no. 3-4, p. 993 | DOI:10.1007/s00209-019-02379-6
- Factoriality and class groups of cluster algebras, Advances in Mathematics, Volume 358 (2019), p. 106858 | DOI:10.1016/j.aim.2019.106858
- Cluster Expansion Formulas in Type A, Algebras and Representation Theory, Volume 22 (2019) no. 1, p. 1 | DOI:10.1007/s10468-017-9755-3
- Geometry of Mutation Classes of Rank 3 Quivers, Arnold Mathematical Journal, Volume 5 (2019) no. 1, p. 37 | DOI:10.1007/s40598-019-00101-2
- Affine cluster monomials are generalized minors, Compositio Mathematica, Volume 155 (2019) no. 7, p. 1301 | DOI:10.1112/s0010437x19007292
- On indecomposable τ-rigid modules for cluster-tilted algebras of tame type, Journal of Algebra, Volume 531 (2019), p. 249 | DOI:10.1016/j.jalgebra.2019.04.024
- Cluster multiplication theorem in the quantum cluster algebra of type A2(2) and the triangular basis, Journal of Algebra, Volume 533 (2019), p. 106 | DOI:10.1016/j.jalgebra.2019.05.028
- Cluster structures in Schubert varieties in the Grassmannian, Proceedings of the London Mathematical Society, Volume 119 (2019) no. 6, p. 1694 | DOI:10.1112/plms.12281
- Acyclic cluster algebras, reflection groups, and curves on a punctured disc, Advances in Mathematics, Volume 340 (2018), p. 855 | DOI:10.1016/j.aim.2018.10.020
- Cluster Characters, Homological Methods, Representation Theory, and Cluster Algebras (2018), p. 101 | DOI:10.1007/978-3-319-74585-5_4
- Some conjectures on generalized cluster algebras via the cluster formula and D-matrix pattern, Journal of Algebra, Volume 493 (2018), p. 57 | DOI:10.1016/j.jalgebra.2017.08.034
- Positivity of denominator vectors of skew-symmetric cluster algebras, Journal of Algebra, Volume 515 (2018), p. 448 | DOI:10.1016/j.jalgebra.2018.09.004
- Properties of minimal mutation-infinite quivers, Journal of Combinatorial Theory, Series A, Volume 155 (2018), p. 122 | DOI:10.1016/j.jcta.2017.11.004
- Minimal Mutation-Infinite Quivers, Experimental Mathematics, Volume 26 (2017) no. 3, p. 308 | DOI:10.1080/10586458.2016.1166353
- Introduction to Cluster Algebras, Symmetries and Integrability of Difference Equations (2017), p. 325 | DOI:10.1007/978-3-319-56666-5_7
- Positivity for Generalized Cluster Variables of Affine Quivers, Algebras and Representation Theory, Volume 19 (2016) no. 6, p. 1495 | DOI:10.1007/s10468-016-9629-0
- Generalised friezes and a modified Caldero–Chapoton map depending on a rigid object, II, Bulletin des Sciences Mathématiques, Volume 140 (2016) no. 4, p. 112 | DOI:10.1016/j.bulsci.2015.05.001
- Toda Systems, Cluster Characters, and Spectral Networks, Communications in Mathematical Physics, Volume 348 (2016) no. 1, p. 145 | DOI:10.1007/s00220-016-2692-x
- Combinatorial Frameworks for Cluster Algebras, International Mathematics Research Notices, Volume 2016 (2016) no. 1, p. 109 | DOI:10.1093/imrn/rnv101
- Rigid and Schurian modules over cluster-tilted algebras of tame type, Mathematische Zeitschrift, Volume 284 (2016) no. 3-4, p. 643 | DOI:10.1007/s00209-016-1668-z
- The Singularity Categories of the Cluster-Tilted Algebras of Dynkin Type, Algebras and Representation Theory, Volume 18 (2015) no. 2, p. 531 | DOI:10.1007/s10468-014-9507-6
- On Involutive Cluster Automorphisms, Communications in Algebra, Volume 43 (2015) no. 5, p. 2029 | DOI:10.1080/00927872.2013.876235
- Multiplicative properties of a quantum Caldero–Chapoton map associated to valued quivers, Journal of Algebra, Volume 442 (2015), p. 299 | DOI:10.1016/j.jalgebra.2015.02.005
- Generalized friezes and a modified Caldero–Chapoton map depending on a rigid object, Nagoya Mathematical Journal, Volume 218 (2015), p. 101 | DOI:10.1215/00277630-2891495
- Cluster characters and the combinatorics of Toda systems, Theoretical and Mathematical Physics, Volume 185 (2015) no. 3, p. 1789 | DOI:10.1007/s11232-015-0379-7
- Quantum cluster characters for valued quivers, Transactions of the American Mathematical Society, Volume 367 (2015) no. 10, p. 7061 | DOI:10.1090/s0002-9947-2015-06251-5
- Характеры кластеров и комбинаторика систем Тоды, Теоретическая и математическая физика, Volume 185 (2015) no. 3, p. 495 | DOI:10.4213/tmf8892
- -tilting theory, Compositio Mathematica, Volume 150 (2014) no. 3, p. 415 | DOI:10.1112/s0010437x13007422
- Triangular Bases in Quantum Cluster Algebras, International Mathematics Research Notices, Volume 2014 (2014) no. 6, p. 1651 | DOI:10.1093/imrn/rns268
- Growth rate of cluster algebras, Proceedings of the London Mathematical Society, Volume 109 (2014) no. 3, p. 653 | DOI:10.1112/plms/pdu010
- Introduction to τ-tilting theory, Proceedings of the National Academy of Sciences, Volume 111 (2014) no. 27, p. 9704 | DOI:10.1073/pnas.1313075111
- Greedy bases in rank 2 quantum cluster algebras, Proceedings of the National Academy of Sciences, Volume 111 (2014) no. 27, p. 9712 | DOI:10.1073/pnas.1313078111
- Dynkin and Extended Dynkin Diagrams, Trends in Contemporary Mathematics, Volume 8 (2014), p. 181 | DOI:10.1007/978-3-319-05254-0_14
- Acyclic Cluster Algebras Revisited, Algebras, Quivers and Representations, Volume 8 (2013), p. 275 | DOI:10.1007/978-3-642-39485-0_12
- Linear independence of cluster monomials for skew-symmetric cluster algebras, Compositio Mathematica, Volume 149 (2013) no. 10, p. 1753 | DOI:10.1112/s0010437x1300732x
- On Tropical Friezes Associated with Dynkin Diagrams, International Mathematics Research Notices, Volume 2013 (2013) no. 18, p. 4243 | DOI:10.1093/imrn/rns176
- Repetitive cluster-tilted algebras, Acta Mathematica Scientia, Volume 32 (2012) no. 4, p. 1449 | DOI:10.1016/s0252-9602(12)60114-3
- The dimension vectors of indecomposable modules of cluster-tilted algebras and the Fomin-Zelevinsky denominators conjecture, Acta Mathematica Sinica, English Series, Volume 28 (2012) no. 3, p. 581 | DOI:10.1007/s10114-012-9389-7
- A ℤ-Basis for the Cluster Algebra of Type
, Algebra Colloquium, Volume 19 (2012) no. 04, p. 591 | DOI:10.1142/s1005386712000466 - Cluster Algebras of Type A
, Algebras and Representation Theory, Volume 15 (2012) no. 5, p. 977 | DOI:10.1007/s10468-011-9275-5 - On Cluster Variables of Rank Two Acyclic Cluster Algebras, Annals of Combinatorics, Volume 16 (2012) no. 2, p. 305 | DOI:10.1007/s00026-012-0134-9
- Mutation Classes of 3×3 Generalized Cartan Matrices, Highlights in Lie Algebraic Methods, Volume 295 (2012), p. 205 | DOI:10.1007/978-0-8176-8274-3_9
- Quantum cluster variables via Serre polynomials, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2012 (2012) no. 668 | DOI:10.1515/crelle.2011.129
- Mutation classes of skew-symmetrizable 3×3 matrices, Proceedings of the American Mathematical Society, Volume 141 (2012) no. 5, p. 1493 | DOI:10.1090/s0002-9939-2012-11477-7
- A quantum analogue of generic bases for affine cluster algebras, Science China Mathematics, Volume 55 (2012) no. 10, p. 2045 | DOI:10.1007/s11425-012-4423-x
- Cluster characters for cluster categories with infinite-dimensional morphism spaces, Advances in Mathematics, Volume 227 (2011) no. 1, p. 1 | DOI:10.1016/j.aim.2010.12.010
- Positivity for cluster algebras from surfaces, Advances in Mathematics, Volume 227 (2011) no. 6, p. 2241 | DOI:10.1016/j.aim.2011.04.018
- Kac–Moody groups and cluster algebras, Advances in Mathematics, Volume 228 (2011) no. 1, p. 329 | DOI:10.1016/j.aim.2011.05.011
- Linear recurrence relations for cluster variables of affine quivers, Advances in Mathematics, Volume 228 (2011) no. 3, p. 1842 | DOI:10.1016/j.aim.2011.06.036
- Geometry of quiver Grassmannians of Kronecker type and applications to cluster algebras, Algebra Number Theory, Volume 5 (2011) no. 6, p. 777 | DOI:10.2140/ant.2011.5.777
- Categorification of Skew-symmetrizable Cluster Algebras, Algebras and Representation Theory, Volume 14 (2011) no. 6, p. 1087 | DOI:10.1007/s10468-010-9228-4
- The Cluster Complex of an Hereditary Artin Algebra, Algebras and Representation Theory, Volume 14 (2011) no. 6, p. 1163 | DOI:10.1007/s10468-010-9229-3
- Cluster-Tilted Algebras and Their Intermediate Coverings, Communications in Algebra, Volume 39 (2011) no. 7, p. 2437 | DOI:10.1080/00927872.2010.489082
- Categorification of Acyclic Cluster Algebras: An Introduction, Higher Structures in Geometry and Physics, Volume 287 (2011), p. 227 | DOI:10.1007/978-0-8176-4735-3_11
- The Integral Cluster Category, International Mathematics Research Notices (2011) | DOI:10.1093/imrn/rnr129
- Maximal rigid subcategories in 2-Calabi–Yau triangulated categories, Journal of Algebra, Volume 348 (2011) no. 1, p. 49 | DOI:10.1016/j.jalgebra.2011.09.027
- Quiver Grassmannians associated with string modules, Journal of Algebraic Combinatorics, Volume 33 (2011) no. 2, p. 259 | DOI:10.1007/s10801-010-0244-6
- Cluster tilting objects in generalized higher cluster categories, Journal of Pure and Applied Algebra, Volume 215 (2011) no. 9, p. 2055 | DOI:10.1016/j.jpaa.2010.11.015
- Quiver varieties and cluster algebras, Kyoto Journal of Mathematics, Volume 51 (2011) no. 1 | DOI:10.1215/0023608x-2010-021
- Quiver grassmannians, quiver varieties and the preprojective algebra, Pacific Journal of Mathematics, Volume 251 (2011) no. 2, p. 393 | DOI:10.2140/pjm.2011.251.393
- From iterated tilted algebras to cluster-tilted algebras, Advances in Mathematics, Volume 223 (2010) no. 4, p. 1468 | DOI:10.1016/j.aim.2009.10.004
- On cluster algebras arising from unpunctured surfaces II, Advances in Mathematics, Volume 223 (2010) no. 6, p. 1885 | DOI:10.1016/j.aim.2009.10.015
- Transverse quiver Grassmannians and bases in affine cluster algebras, Algebra Number Theory, Volume 4 (2010) no. 5, p. 599 | DOI:10.2140/ant.2010.4.599
- On a Quantum Analog of the Caldero-Chapoton Formula, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnq192
- Denominators in cluster algebras of affine type, Journal of Algebra, Volume 323 (2010) no. 8, p. 2083 | DOI:10.1016/j.jalgebra.2010.02.012
- Cluster expansion formulas and perfect matchings, Journal of Algebraic Combinatorics, Volume 32 (2010) no. 2, p. 187 | DOI:10.1007/s10801-009-0210-3
- Quivers with potentials and their representations II: Applications to cluster algebras, Journal of the American Mathematical Society, Volume 23 (2010) no. 3, p. 749 | DOI:10.1090/s0894-0347-10-00662-4
- Cluster structures from 2-Calabi–Yau categories with loops, Mathematische Zeitschrift, Volume 265 (2010) no. 4, p. 951 | DOI:10.1007/s00209-009-0549-0
- Periodicities of T-systems and Y-systems, Nagoya Mathematical Journal, Volume 197 (2010), p. 59 | DOI:10.1215/00277630-2009-003
- Cluster algebras and semipositive symmetrizable matrices, Transactions of the American Mathematical Society, Volume 363 (2010) no. 5, p. 2733 | DOI:10.1090/s0002-9947-2010-05255-9
- Coloured quiver mutation for higher cluster categories, Advances in Mathematics, Volume 222 (2009) no. 3, p. 971 | DOI:10.1016/j.aim.2009.05.017
- Clusters in Non-simply-laced Finite Type via Frobenius Morphisms, Algebra Colloquium, Volume 16 (2009) no. 01, p. 143 | DOI:10.1142/s1005386709000169
- Cluster structures for 2-Calabi–Yau categories and unipotent groups, Compositio Mathematica, Volume 145 (2009) no. 4, p. 1035 | DOI:10.1112/s0010437x09003960
- Noncrossing partitions and representations of quivers, Compositio Mathematica, Volume 145 (2009) no. 6, p. 1533 | DOI:10.1112/s0010437x09004023
- On Cluster Algebras Arising from Unpunctured Surfaces, International Mathematics Research Notices (2009) | DOI:10.1093/imrn/rnp047
- Cluster combinatorics of d-cluster categories, Journal of Algebra, Volume 321 (2009) no. 10, p. 2898 | DOI:10.1016/j.jalgebra.2009.01.032
- Mutation in triangulated categories and rigid Cohen–Macaulay modules, Inventiones mathematicae, Volume 172 (2008) no. 1, p. 117 | DOI:10.1007/s00222-007-0096-4
- Derived equivalence classification for cluster-tilted algebras of typeAn, Journal of Algebra, Volume 319 (2008) no. 7, p. 2723 | DOI:10.1016/j.jalgebra.2008.01.007
- Preprojective Cluster Variables of Acyclic Cluster Algebras, Communications in Algebra, Volume 35 (2007) no. 9, p. 2857 | DOI:10.1080/00927870701451334
Cité par 114 documents. Sources : Crossref