[Actions non orbitalement équivalentes de ]
Pour tout , nous construisons une famille concrète à un paramètre, des actions non orbitalement équivalentes du groupe libre . Ces actions apparaissent comme produits diagonaux entre une action généralisée de Bernoulli et l’action , où est vu comme un sous-groupe de .
For any , we construct a concrete 1-parameter family of non-orbit equivalent actions of the free group . These actions arise as diagonal products between a generalized Bernoulli action and the action , where is seen as a subgroup of .
Keywords: free groups, orbit equivalence
Mot clés : groupes libres, équivalence orbitale
@article{ASENS_2009_4_42_4_675_0, author = {Ioana, Adrian}, title = {Non-orbit equivalent actions of $\mathbb {F}_n$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {675--696}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 42}, number = {4}, year = {2009}, doi = {10.24033/asens.2106}, mrnumber = {2568879}, zbl = {1185.37009}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2106/} }
TY - JOUR AU - Ioana, Adrian TI - Non-orbit equivalent actions of $\mathbb {F}_n$ JO - Annales scientifiques de l'École Normale Supérieure PY - 2009 SP - 675 EP - 696 VL - 42 IS - 4 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/asens.2106/ DO - 10.24033/asens.2106 LA - en ID - ASENS_2009_4_42_4_675_0 ER -
%0 Journal Article %A Ioana, Adrian %T Non-orbit equivalent actions of $\mathbb {F}_n$ %J Annales scientifiques de l'École Normale Supérieure %D 2009 %P 675-696 %V 42 %N 4 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/asens.2106/ %R 10.24033/asens.2106 %G en %F ASENS_2009_4_42_4_675_0
Ioana, Adrian. Non-orbit equivalent actions of $\mathbb {F}_n$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 4, pp. 675-696. doi : 10.24033/asens.2106. http://archive.numdam.org/articles/10.24033/asens.2106/
[1] Hyperfinite and actions for nonamenable groups, J. Funct. Anal. 40 (1981), 30-44. | MR | Zbl
& ,[2] Kazhdan constants for , J. reine angew. Math. 413 (1991), 36-67. | EuDML | MR | Zbl
,[3] An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), 431-450. | MR | Zbl
, & ,[4] Property and asymptotically invariant sequences, Israel J. Math. 37 (1980), 209-210. | MR | Zbl
& ,[5] On groups of measure preserving transformation. I, Amer. J. Math. 81 (1959), 119-159. | MR | Zbl
,[6] Orbit inequivalent actions of non-amenable groups, preprint arXiv:0707.4215, 2007.
,[7] Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), 325-359. | MR | Zbl
& ,[8] On orbit equivalence of measure preserving actions, in Rigidity in dynamics and geometry (Cambridge, 2000), Springer, 2002, 167-186. | MR | Zbl
,[9] Relative property () actions and trivial outer automorphism groups, preprint arXiv:0804.0358, 2008. | Zbl
,[10] A measurable-group-theoretic solution to von Neumann's problem, Invent. Math. 177 (2009), 533-540. | MR | Zbl
& ,[11] An uncountable family of nonorbit equivalent actions of , J. Amer. Math. Soc. 18 (2005), 547-559. | MR | Zbl
& ,[12] Fundamental groups for ergodic actions and actions with unit fundamental groups, Publ. Res. Inst. Math. Sci. 24 (1988), 821-847. | MR | Zbl
& ,[13] A converse to Dye's theorem, Trans. Amer. Math. Soc. 357 (2005), 3083-3103. | MR | Zbl
,[14] Orbit inequivalent actions for groups containing a copy of , preprint arXiv:math/0701027, 2007. | MR | Zbl
,[15] A relative version of Connes’ invariant and existence of orbit inequivalent actions, Ergodic Theory Dynam. Systems 27 (2007), 1199-1213. | MR | Zbl
,[16] Rigidity results for wreath product factors, J. Funct. Anal. 252 (2007), 763-791. | MR | Zbl
,[17] Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math. 200 (2008), 85-153. | MR | Zbl
, & ,[18] Asymptotically invariant sequences and approximate finiteness, Amer. J. Math. 109 (1987), 91-114. | MR | Zbl
& ,[19] Classification of certain generalized Bernoulli actions of mapping class groups, preprint http://www.math.kyoto-u.ac.jp/~kida/papers/ber.pdf, 2008.
,[20] Orbit equivalence rigidity and bounded cohomology, Ann. of Math. 164 (2006), 825-878. | MR | Zbl
& ,[21] On rings of operators, Ann. of Math. 37 (1936), 116-229. | JFM | MR | Zbl
& ,[22] Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), 161-164. | MR | Zbl
& ,[23] Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1-141. | MR | Zbl
& ,[24] Ergodic theory, Cambridge Studies in Advanced Math. 2, Cambridge Univ. Press, 1983. | MR | Zbl
,[25] On a class of type factors with Betti numbers invariants, Ann. of Math. 163 (2006), 809-899. | MR | Zbl
,[26] Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions, J. Inst. Math. Jussieu 5 (2006), 309-332. | MR | Zbl
,[27] Strong rigidity of factors arising from malleable actions of -rigid groups. I, Invent. Math. 165 (2006), 369-408. | MR | Zbl
,[28] Cocycle and orbit equivalence superrigidity for malleable actions of -rigid groups, Invent. Math. 170 (2007), 243-295. | MR | Zbl
,[29] Deformation and rigidity for group actions and von Neumann algebras, in International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, 445-477. | MR | Zbl
,[30] On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008), 981-1000. | MR | Zbl
,[31] Actions of whose II factors and orbit equivalence relations have prescribed fundamental group, preprint arXiv:0803.3351, 2008, to appear in J. Amer. Math. Soc. | MR | Zbl
& ,[32] Amenability 1 (1981), 223-236. | MR | Zbl
,[33] Measurable group theory, in European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, 391-423. | MR | Zbl
,[34] Ergodic theory and semisimple groups, Monographs in Math. 81, Birkhäuser, 1984. | MR | Zbl
,Cité par Sources :