[Resserrement central non-uniforme et la généricité de l’ergodicité parmi les -symplectomorphismes partiellement hyperboliques]
Nous introduisons une notion non-uniforme de resserrement central pour les difféomorphismes partiellement hyperboliques qui nous permet de généraliser quelques résultats de Burns-Wilkinson et Avila-Santamaria-Viana. Cette nouvelle technique est utilisée, en combinaison avec d’autres constructions, pour démontrer la généricité de l’ergodicité parmi les difféomorphismes symplectiques partiellement hyperboliques de classe . De plus, nous obtenons de nouveaux exemples de dynamiques stablement ergodiques.
We introduce the notion of nonuniform center bunching for partially hyperbolic diffeomorphims, and extend previous results by Burns-Wilkinson and Avila-Santamaria-Viana. Combining this new technique with other constructions we prove that -generic partially hyperbolic symplectomorphisms are ergodic. We also construct new examples of stably ergodic partially hyperbolic diffeomorphisms.
Keywords: partial hyperbolicity, center bunching, ergodicity, symplectic diffeomorphisms
Mot clés : hyperbolicité partielle, resserrement central, ergodicité, difféomorphismes symplectiques
@article{ASENS_2009_4_42_6_931_0, author = {Avila, Artur and Bochi, Jairo and Wilkinson, Amie}, title = {Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {931--979}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 42}, number = {6}, year = {2009}, doi = {10.24033/asens.2113}, mrnumber = {2567746}, zbl = {1191.37017}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2113/} }
TY - JOUR AU - Avila, Artur AU - Bochi, Jairo AU - Wilkinson, Amie TI - Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms JO - Annales scientifiques de l'École Normale Supérieure PY - 2009 SP - 931 EP - 979 VL - 42 IS - 6 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/asens.2113/ DO - 10.24033/asens.2113 LA - en ID - ASENS_2009_4_42_6_931_0 ER -
%0 Journal Article %A Avila, Artur %A Bochi, Jairo %A Wilkinson, Amie %T Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms %J Annales scientifiques de l'École Normale Supérieure %D 2009 %P 931-979 %V 42 %N 6 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/asens.2113/ %R 10.24033/asens.2113 %G en %F ASENS_2009_4_42_6_931_0
Avila, Artur; Bochi, Jairo; Wilkinson, Amie. Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 6, pp. 931-979. doi : 10.24033/asens.2113. http://archive.numdam.org/articles/10.24033/asens.2113/
[1] Flavors of partial hyperbolicity, in preparation.
& ,[2] New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow Math. Soc. 23 (1970), 1-35. | MR | Zbl
& ,[3] A pasting lemma and some applications for conservative systems, Ergodic Theory Dynam. Systems 27 (2007), 1399-1417. | MR | Zbl
& ,[4] Le “closing lemma” en topologie , Mém. Soc. Math. Fr. (N.S.) 74 (1998). | Numdam | MR | Zbl
,[5] Dynamiques symplectiques génériques, Ergodic Theory Dynam. Systems 25 (2005), 1401-1436. | MR | Zbl
, & ,[6] Random dynamical systems, 2nd éd., Springer Mono. Math., Springer, 2002. | MR
,[7] On the regularization of conservative maps, to appear in Acta Math. | MR | Zbl
,[8] Cocycles over partially hyperbolic maps, preprint.
, & ,[9] -generic symplectic diffeomorphisms: partial hyperbolicity and zero center Lyapunov exponents, to appear in J. Inst. Math. Jussieu. | MR | Zbl
,[10] The Lyapunov exponents of generic volume-preserving and symplectic maps, Ann. of Math. 161 (2005), 1423-1485. | MR | Zbl
& ,[11] Récurrence et généricité, Invent. Math. 158 (2004), 33-104. | MR | Zbl
& ,[12] A -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. 158 (2003), 355-418. | MR | Zbl
, & ,[13] Dynamics beyond uniform hyperbolicity, Encyclopaedia of Math. Sciences 102, Springer, 2005. | MR | Zbl
, & ,[14] Abundance of stable ergodicity, Comment. Math. Helv. 79 (2004), 753-757. | MR | Zbl
, , & ,[15] Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Functional Anal. Appl. 9 (1975), 8-16. | MR | Zbl
,[16] Partial hyperbolicity, Lyapunov exponents and stable ergodicity, J. Statist. Phys. 108 (2002), 927-942. | MR | Zbl
, & ,[17] Stable ergodicity for partially hyperbolic attractors with negative central exponents, J. Mod. Dyn. 2 (2008), 63-81. | MR | Zbl
, , & ,[18] On the ergodicity of partially hyperbolic systems, Annals of Math. 171 (2010), 429-467. | MR | Zbl
& ,[19] Stable accessibility is dense, Astérisque 287 (2003), 33-60. | Numdam | MR | Zbl
& ,[20] Adapted metrics for dominated splittings, Ergodic Theory Dynam. Systems 27 (2007), 1839-1849. | MR | Zbl
,[21] Invariant manifolds, Lecture Notes in Math. 583, Springer, 1977. | MR | Zbl
, & ,[22] Partial hyperbolicity for symplectic diffeomorphisms, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), 641-661. | Numdam | MR | Zbl
& ,[23] An ergodic closing lemma, Ann. of Math. 116 (1982), 503-540. | MR | Zbl
,[24] Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. 42 (1941), 874-920. | MR | Zbl
& ,[25] Ergodic theory, Cambridge Studies in Advanced Math. 2, Cambridge Univ. Press, 1989. | MR | Zbl
,[26] Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc. (JEMS) 2 (2000), 1-52. | MR | Zbl
& ,[27] Hölder foliations, Duke Math. J. 86 (1997), 517-546. | MR | Zbl
, & ,[28] A criterion for ergodicity of non-uniformly hyperbolic diffeomorphisms, Electron. Res. Announc. Math. Sci. 14 (2007), 74-81 (electronic). | MR | Zbl
, , & ,[29] Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math. 172 (2008), 353-381. | MR | Zbl
, & ,[30] Partial hyperbolicity or dense elliptic periodic points for -generic symplectic diffeomorphisms, Trans. Amer. Math. Soc. 358 (2006), 5119-5138 (electronic). | MR | Zbl
& ,[31] Stably ergodic approximation: two examples, Ergodic Theory Dynam. Systems 20 (2000), 875-893. | MR | Zbl
& ,[32] Robust transitivity and almost robust ergodicity, Ergodic Theory Dynam. Systems 24 (2004), 1261-1269. | MR | Zbl
,[33] The cohomological equation for partially hyperbolic diffeomorphisms, preprint.
,[34] Note on smoothing symplectic and volume-preserving diffeomorphisms, in Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), Lecture Notes in Math. 597, Springer, 1977, 828-854. | MR | Zbl
,Cité par Sources :