Weak symplectic fillings and holomorphic curves  [ Remplissages symplectiques faibles et courbes holomorphes ]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 44 (2011) no. 5, p. 801-853
On montre plusieurs résultats concernant les remplissages faibles de variétés de contact de dimension 3, notamment : (1) Les remplissages faibles des variétés de contact planaires sont à déformation près des éclatements de remplissages de Stein. (2) Les variétés de contact ayant de la torsion planaire et satisfaisant une certaine condition homologique n’admettent pas de remplissages faibles - de cette manière on obtient des nouveaux exemples de variétés de contact qui ne sont pas faiblement remplissables. (3) La remplissabilité faible est préservée par l’opération de somme connexe le long de tores pré-lagrangiens - ce qui nous donne beaucoup de nouveaux exemples de variétés de contact sans torsion de Giroux qui sont faiblement, mais pas fortement, remplissables. On établit une obstruction à la remplissabilité faible avec deux approches qui utilisent des courbes holomorphes. La première méthode se base sur l’argument original de Gromov-Eliashberg des « disques de Bishop » . On utilise une famille d’anneaux holomorphes s’appuyant sur un « anneau vrillé ancré » pour étudier le cas spécial de la torsion de Giroux. La deuxième méthode utilise des courbes holomorphes à pointes, et elle se base sur l’observation que, dans un remplissage faible, la structure symplectique peut être déformée au voisinage du bord, en une structure hamiltonienne stable. Cette observation permet aussi d’appliquer les méthodes à la théorie symplectique de champs, et on montre dans un cas simple que la distinction entre les remplissabilités faible et forte se traduit en homologie de contact par une distinction entre coefficients tordus et non tordus.
We prove several results on weak symplectic fillings of contact 3-manifolds, including: (1) Every weak filling of any planar contact manifold can be deformed to a blow up of a Stein filling. (2) Contact manifolds that have fully separating planar torsion are not weakly fillable-this gives many new examples of contact manifolds without Giroux torsion that have no weak fillings. (3) Weak fillability is preserved under splicing of contact manifolds along symplectic pre-Lagrangian tori-this gives many new examples of contact manifolds without Giroux torsion that are weakly but not strongly fillable. We establish the obstructions to weak fillings via two parallel approaches using holomorphic curves. In the first approach, we generalize the original Gromov-Eliashberg “Bishop disk” argument to study the special case of Giroux torsion via a Bishop family of holomorphic annuli with boundary on an “anchored overtwisted annulus”. The second approach uses punctured holomorphic curves, and is based on the observation that every weak filling can be deformed in a collar neighborhood so as to induce a stable Hamiltonian structure on the boundary. This also makes it possible to apply the techniques of Symplectic Field Theory, which we demonstrate in a test case by showing that the distinction between weakly and strongly fillable translates into contact homology as the distinction between twisted and untwisted coefficients.
DOI : https://doi.org/10.24033/asens.2155
Classification:  57R17,  32Q65,  53D42
Mots clés: variétés de contact, variétés symplectiques, remplissabilité faible, courbes holomorphes
@article{ASENS_2011_4_44_5_801_0,
     author = {Niederkr\"uger, Klaus and Wendl, Chris},
     title = {Weak symplectic fillings and holomorphic curves},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 44},
     number = {5},
     year = {2011},
     pages = {801-853},
     doi = {10.24033/asens.2155},
     zbl = {1239.53101},
     mrnumber = {2931519},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_2011_4_44_5_801_0}
}
Niederkrüger, Klaus; Wendl, Chris. Weak symplectic fillings and holomorphic curves. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 44 (2011) no. 5, pp. 801-853. doi : 10.24033/asens.2155. http://www.numdam.org/item/ASENS_2011_4_44_5_801_0/

[1] P. Albers, B. Bramham & C. Wendl, On nonseparating contact hypersurfaces in symplectic 4-manifolds, Algebr. Geom. Topol. 10 (2010), 697-737. | MR 2606798 | Zbl 1207.32019

[2] F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki & E. Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003), 799-888. | MR 2026549 | Zbl 1131.53312

[3] F. Bourgeois & O. Van Koert, Contact homology of left-handed stabilizations and plumbing of open books, Commun. Contemp. Math. 12 (2010), 223-263. | MR 2646902 | Zbl 1204.53074

[4] F. Bourgeois & K. Mohnke, Coherent orientations in symplectic field theory, Math. Z. 248 (2004), 123-146. | MR 2092725 | Zbl 1060.53080

[5] F. Bourgeois & K. Niederkrüger, PS-overtwisted contact manifolds are algebraically overtwisted, in preparation.

[6] K. Cieliebak & K. Mohnke, Compactness for punctured holomorphic curves, J. Symplectic Geom. 3 (2005), 589-654. | MR 2235856 | Zbl 1113.53053

[7] K. Cieliebak & E. Volkov, First steps in stable Hamiltonian topology, preprint arXiv:1003.5084.

[8] Y. Eliashberg, Classification of overtwisted contact structures on 3-manifolds, Invent. Math. 98 (1989), 623-637. | MR 1022310 | Zbl 0684.57012

[9] Y. Eliashberg, Filling by holomorphic discs and its applications, in Geometry of low-dimensional manifolds, 2 (Durham, 1989), London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press, 1990, 45-67. | MR 1171908 | Zbl 0731.53036

[10] Y. Eliashberg, Topological characterization of Stein manifolds of dimension >2, Internat. J. Math. 1 (1990), 29-46. | MR 1044658 | Zbl 0699.58002

[11] Y. Eliashberg, On symplectic manifolds with some contact properties, J. Differential Geom. 33 (1991), 233-238. | MR 1085141 | Zbl 0735.53021

[12] Y. Eliashberg, Unique holomorphically fillable contact structure on the 3-torus, Int. Math. Res. Not. 1996 (1996), 77-82. | MR 1383953 | Zbl 0852.58034

[13] Y. Eliashberg, Invariants in contact topology, in Proceedings of the International Congress of Mathematicians, II, 1998, 327-338. | MR 1648083 | Zbl 0913.53010

[14] Y. Eliashberg, A few remarks about symplectic filling, Geom. Topol. 8 (2004), 277-293. | MR 2023279 | Zbl 1067.53070

[15] Y. Eliashberg, A. Givental & H. Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. II (2000), 560-673. | MR 1826267 | Zbl 0989.81114

[16] J. B. Etnyre, On symplectic fillings, Algebr. Geom. Topol. 4 (2004), 73-80. | Zbl 1078.53074

[17] J. B. Etnyre, Planar open book decompositions and contact structures, Int. Math. Res. Not. 2004 (2004), 4255-4267. | Zbl 1069.57016

[18] J. B. Etnyre & K. Honda, Tight contact structures with no symplectic fillings, Invent. Math. 148 (2002), 609-626. | Zbl 1037.57020

[19] D. T. Gay, Four-dimensional symplectic cobordisms containing three-handles, Geom. Topol. 10 (2006), 1749-1759. | Zbl 1129.53061

[20] H. Geiges, An introduction to contact topology, Cambridge Studies in Advanced Math. 109, Cambridge Univ. Press, 2008. | Zbl 1153.53002

[21] P. Ghiggini & K. Honda, Giroux torsion and twisted coefficients, preprint arXiv:0804.1568.

[22] E. Giroux, Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. École Norm. Sup. 27 (1994), 697-705. | Numdam | Zbl 0819.53018

[23] E. Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000), 615-689. | Zbl 1186.53097

[24] E. Giroux, Structures de contact sur les variétés fibrées en cercles au-dessus d'une surface, Comment. Math. Helv. 76 (2001), 218-262. | Zbl 0988.57015

[25] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347. | Zbl 0592.53025

[26] H. Hofer, A general Fredholm theory and applications, in Current developments in mathematics, 2004, Int. Press, Somerville, MA, 2006, 1-71. | MR 2459290 | Zbl 1185.58001

[27] H. Hofer & E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts, Birkhäuser, 1994. | MR 1306732 | Zbl 0805.58003

[28] P. B. Kronheimer & T. S. Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997), 209-255. | MR 1474156 | Zbl 0892.53015

[29] J. Latschev & C. Wendl, Algebraic torsion in contact manifolds, Geometric and Functional Analysis 21 (2011), 1144-1195. | MR 2846386 | Zbl 1248.53072

[30] P. Lisca, On symplectic fillings of 3-manifolds, in Proceedings of 6th Gökova Geometry-Topology Conference, 23, 1999, 151-159. | MR 1701644 | Zbl 0952.53038

[31] P. Lisca, On symplectic fillings of lens spaces, Trans. Amer. Math. Soc. 360 (2008), 765-799. | MR 2346471 | Zbl 1137.57026

[32] R. Lutz, Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier (Grenoble) 27 (1977), 1-15. | Numdam | MR 478180 | Zbl 0328.53024

[33] P. Massot, Infinitely many universally tight torsion free contact structures with vanishing Ozsváth-Szabó contact invariants, Mathematische Annalen (2001), 1-26, http://dx.doi.org/10.1007/s00208-011-0711-y. | Zbl 1272.57014

[34] D. Mcduff, Symplectic manifolds with contact type boundaries, Invent. Math. 103 (1991), 651-671. | MR 1091622 | Zbl 0719.53015

[35] D. Mcduff & D. Salamon, J-holomorphic curves and symplectic topology, Amer. Math. Soc. Colloquium Publications 52, Amer. Math. Soc., 2004. | MR 2045629 | Zbl 1064.53051

[36] K. Niederkrüger, The plastikstufe-a generalization of the overtwisted disk to higher dimensions, Algebr. Geom. Topol. 6 (2006), 2473-2508. | MR 2286033 | Zbl 1129.53056

[37] O. Plamenevskaya & J. Van Horn-Morris, Planar open books, monodromy factorizations and symplectic fillings, Geom. Topol. 14 (2010), 2077-2101. | MR 2740642 | Zbl pre05809280

[38] R. Siefring, Intersection theory of punctured pseudoholomorphic curves, preprint arXiv:0907.0470. | MR 2862160 | Zbl 1246.32028

[39] C. H. Taubes, Embedded contact homology and Seiberg-Witten Floer cohomology V, Geom. Topol. 14 (2010), 2961-3000. | MR 2746727 | Zbl 1276.57027

[40] C. Wendl, Finite energy foliations and surgery on transverse links, Thèse, New York University, 2005. | MR 2706831

[41] C. Wendl, Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv. 85 (2010), 347-407. | MR 2595183 | Zbl 1207.32021

[42] C. Wendl, Strongly fillable contact manifolds and J-holomorphic foliations, Duke Math. 151 (2010), 337-384. | MR 2605865 | Zbl 1207.32022

[43] C. Wendl, Contact fiber sums, monodromy maps and symplectic fillings, in preparation.

[44] C. Wendl, A hierarchy of local symplectic filling obstructions for contact 3-manifolds, preprint arXiv:1009.2746. | MR 3102479 | Zbl 1279.57019

[45] C. Wendl & J. Latschev, Algebraic torsion in contact manifolds, preprint arXiv:1009.3262, with an appendix by M. Hutchings. | MR 2846386 | Zbl 1248.53072

[46] M.-L. Yau, Vanishing of the contact homology of overtwisted contact 3-manifolds, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), 211-229, with an appendix by Y. Eliashberg. | MR 2230587 | Zbl 1106.57021

[47] K. Zehmisch, The Eliashberg-Gromov tightness theorem, Mémoire, Universität Leipzig, 2003.