@article{ASNSP_1972_3_26_1_33_0, author = {Chadam, John M.}, title = {Asymptotics for $\square \, u = m^2 u + G (x, t, u, u\_x, u\_t),$ I. Global existence and decay}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {33--65}, publisher = {Scuola normale superiore}, volume = {Ser. 3, 26}, number = {1}, year = {1972}, language = {en}, url = {archive.numdam.org/item/ASNSP_1972_3_26_1_33_0/} }
Chadam, John M. Asymptotics for $\square \, u = m^2 u + G (x, t, u, u_x, u_t),$ I. Global existence and decay. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 3, Tome 26 (1972) no. 1, pp. 33-65. http://archive.numdam.org/item/ASNSP_1972_3_26_1_33_0/
[1] Dispersion for Non-linear Relativistic Equations, II, Ann. Scient. Ec. Norm. Sup., ser 4, 1, 459-497, (1968). | Numdam | MR 243788 | Zbl 0179.42302
,[2] Decay and Asymptotics for □ u = F(u), J. Functl. Anal., 2, 409-457, (1968). | Zbl 0182.13602
,[3] Non-linear Semi-groups, Ann. Math., 78, 339-364, (1963). | MR 152908 | Zbl 0204.16004
,[4] On Some Solutions to the Klein-Gordon Equation Related to an Integral of Sonine, to appear. | MR 415049 | Zbl 0214.10102
,[5] Lebesgue Spaces of Differentiable Functions and Distributions, 33-49, Proc. Symp. Pure Math. IV, Amer. Math. Soc. Providence, 1961. | MR 143037 | Zbl 0195.41103
,[6] Quantization and Dispersion for Non-linear Relativistic Equations, 79-108, Proc. Conf. on Math. Theory of Elem. Patticles, M. I. T., Cambridge, 1966.
,[7] Equality of Minimal and Maximal Extension of Partial Differential Operators iu Lp (Rn), Proc. Amer. Math. Soc., 17, 1031-1033, (1966). | MR 197954 | Zbl 0156.32901
,[8] On Elliptic Partial Differential Equations, Ann. Scoula Norm. Sup. Pisa, 13, 115-162, (1959). | Numdam | MR 109940 | Zbl 0088.07601
,[9] Outgoing Solutions of (- Δ + q - k2) u = f in an Exterior Domain, J. Math. Anal. Appl., 31, 81-116, (1970). | Zbl 0201.13202
AND ,[10] The Asymptotic Behavior of the Klein-Gordon Equation with External Potential, I, J. Math. Anal. Appl., 31, 334-348, (1970) and II, Pac. J. Math., 31, 19-31, (1969). | MR 262882 | Zbl 0212.44202
,