@article{ASNSP_1986_4_13_2_225_0, author = {Rosay, Jean-Pierre}, title = {Some applications of {Cauchy-Fantappie} forms to (local) problems on $\bar{\partial }_b$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {225--243}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 13}, number = {2}, year = {1986}, zbl = {0633.32007}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1986_4_13_2_225_0/} }
TY - JOUR AU - Rosay, Jean-Pierre TI - Some applications of Cauchy-Fantappie forms to (local) problems on $\bar{\partial }_b$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1986 SP - 225 EP - 243 VL - 13 IS - 2 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1986_4_13_2_225_0/ LA - en ID - ASNSP_1986_4_13_2_225_0 ER -
%0 Journal Article %A Rosay, Jean-Pierre %T Some applications of Cauchy-Fantappie forms to (local) problems on $\bar{\partial }_b$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1986 %P 225-243 %V 13 %N 2 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1986_4_13_2_225_0/ %G en %F ASNSP_1986_4_13_2_225_0
Rosay, Jean-Pierre. Some applications of Cauchy-Fantappie forms to (local) problems on $\bar{\partial }_b$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 13 (1986) no. 2, pp. 225-243. http://archive.numdam.org/item/ASNSP_1986_4_13_2_225_0/
[1] Differentials forms orthogonal to holomorphic functions and their properties, Transl. of Math. Monographs AMS, vol. 56 (1983). | Zbl
,[2] Levi convexity and the H. Lewy problem. Part I Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1972), pp. 325-363. | Numdam | MR | Zbl
[3] E. E. Levi convexity and the Hans Lewy problem, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1972), pp. 747-806. | Numdam | MR | Zbl
,[4] Le problème de Cauchy pour ∂ et application, to appear in Ann. Sci. Ecole Norm. Sup. and Inégalités de Carleman et extension locale des functions holomorphes, Ann. Scuola Norm. Sup. Pisa, IV, Vol. IX, no 4 (1981), pp. 645-669. | Numdam | Zbl
,[5] Locale kerne und beschrankte, Losungen für den ∂-Operator auf q-convexen Gebeiten, Math. Ann., 208 (1974), pp. 249-265. | Zbl
,[6] The Neumann Problem for the Cauchy Riemann Complex, Princeton Univ. Press, 1972. | MR | Zbl
,[7] Fundamentals solutions in complex analysis, Part II. The induced Cauchy Riemann Operator, Duke Math. J. Vol. 46, no 2 (1979), pp. 301-340. | MR | Zbl
,[8] The Lewy equation and analysis on pseudo-convex manifolds, Russian Math. Surveys, 32:3 (1977), pp. 59-130. | MR | Zbl
,[9] Spectre de A(Ω) pour des domaines faiblement pseudo-convexes réguliers, J. Funct. Anal., 37 (1980), pp. 127-135. | Zbl
,[10] An Introduction to complex analysis in several variables, Van Nostrand Princeton, NJ (1966). | MR | Zbl
,[11] Global regularity for ∂ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc., 181 (1973), pp. 273-292, and Methods of PDE in complex analysis, Proceedings in Pure Math., 30 (1977), pp. 215-237. | Zbl
,[12] On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math., 81 (1965), pp. 451-472. | MR | Zbl
,[13] Equation de Lewy-résolubilité globale de l'équation ∂ bu = f sur la frontière de domaines faiblement pseudo-convexes de C2 on Cn, Duke Math. J., Vol. 49, no 1 (1982), pp. 121-127. | Zbl
,[14] Un exemple. de domaine pseudo-convexe régulier ou l'équation ∂u = f n'admet pas de solution bornée pour f bornée, Inventiones Math., Vol. 62, no 2 (1980), pp. 235-242. | Zbl
,[15] Interpolation Manifolds, in « Recent developments in several complex variables » ed. J. FORNAESS, Princeton Univ. Press (1981). | MR | Zbl
,[16] A kernel approach to the local solvability of the tangential Cauchy Riemann equations, Trans. Amer. Math. Soc., 289 (1985), pp. 643-658. | MR | Zbl
- ,