The Weinstein conjecture in cotangent bundles and related results
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 15 (1988) no. 3, pp. 411-445.
@article{ASNSP_1988_4_15_3_411_0,
     author = {Hofer, H. and Viterbo, C.},
     title = {The {Weinstein} conjecture in cotangent bundles and related results},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {411--445},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 15},
     number = {3},
     year = {1988},
     zbl = {0697.58044},
     mrnumber = {1015801},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1988_4_15_3_411_0/}
}
TY  - JOUR
AU  - Hofer, H.
AU  - Viterbo, C.
TI  - The Weinstein conjecture in cotangent bundles and related results
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1988
DA  - 1988///
SP  - 411
EP  - 445
VL  - Ser. 4, 15
IS  - 3
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1988_4_15_3_411_0/
UR  - https://zbmath.org/?q=an%3A0697.58044
UR  - https://www.ams.org/mathscinet-getitem?mr=1015801
LA  - en
ID  - ASNSP_1988_4_15_3_411_0
ER  - 
%0 Journal Article
%A Hofer, H.
%A Viterbo, C.
%T The Weinstein conjecture in cotangent bundles and related results
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1988
%P 411-445
%V Ser. 4, 15
%N 3
%I Scuola normale superiore
%G en
%F ASNSP_1988_4_15_3_411_0
Hofer, H.; Viterbo, C. The Weinstein conjecture in cotangent bundles and related results. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 15 (1988) no. 3, pp. 411-445. http://archive.numdam.org/item/ASNSP_1988_4_15_3_411_0/

[1] R. Abraham - J. Marsden, Foundation of Mechanics, Benjamin/Cummings 2nd ed., 1978. | Zbl

[2] J.C. Alexander - M. Reeken, On the topological structure of the set of generalized solutions of the catenary problem, Proc. Roy. Soc. Edin. (to appear) | MR | Zbl

[3] H. Amann - E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian equations, Manuscripta Math. 32 (1980), pp. 149-189. | MR | Zbl

[4] V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, TAMS 274 (1982), pp. 533-572. | MR | Zbl

[5] V. Benci - P. Rabinowitz, Critical point theorems for indefinite functionals, Inv. Math., 52 (1982), pp. 241-273. | MR | Zbl

[6] F. Clarke, Periodic Solutions of Hamiltonian inclusions, J. Diff. Eq. 40 (1981), pp. 1-6. | MR | Zbl

[7] A. Dold, The fixed point transfer of fibre preserving maps, Math. Z. 148 (1976), pp. 215-244. | MR | Zbl

[8] H. Elliasson, Geometry of manifold of maps, J. Diff. Geometry 1 (1967), pp. 165-194.

[9] H. Gluck - W. Ziller, Existence of periodic motions for conservative systems, Seminar on minimal submanifolds, Princeton University Press, 1982. | MR | Zbl

[10] H. Hofer, Critical point theory for Hamiltonian systems on cotangent bundles (in preparation).

[11] H. Hofer, Lagrangian embeddings and critical point theory, Ann. Inst. Henri Poincare, Analyse nonlineaire Vol. 2 No. 6, 1985, pp. 407-462. | Numdam | MR | Zbl

[12] H. Hofer - E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo, Inv. Math. 90 (1987), pp. 1-9. | MR | Zbl

[13] W. Klingenberg, Riemannian Geometry, de Gruyter studies in Mathematics 1, Walter de Gruyter, Berlin, New York, 1982. | MR | Zbl

[14] W. Klingenberg, Lectures on closed geodesics, Grundlehren der Math. Wiss. 230 (1978), Springer Berlin-Heidelberg- New York. | MR | Zbl

[15] S. Lang, Differentiable manifolds, Reading, Mass: Addison-Wesley 1972. | Zbl

[16] W. Massey, Homology and Cohomology theory, Marcel Dekker, New York-Basel. | MR | Zbl

[17] R. Palais, Foundations of global nonlinear analysis, W.A. Benjamin Inc., New York, 1968. | MR | Zbl

[18] P. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure and Appl. Math. 31 (1978), pp. 157-184. | MR | Zbl

[19] P. Rabinowitz, Periodic solutions of a Hamiltonian system on a prescribed energysurface, JDE 33 (1979), pp. 336-352. | MR | Zbl

[20] P. Rabinowitz, On a theorem of Hofer and Zehnder, in "Periodic solutions of Hamiltonian Systems and Related Topics", Ed. P. Rabinowitz, A. Ambrosetti, I. Ekeland and E. Zehnder, Nato ASI Series Vol. 209, pp. 245-254. | MR | Zbl

[21] H. Seifert, Periodische Bewegungen mechanischer Systeme, Math. Z. 51 (1948), pp. 197-216. | MR | Zbl

[22] D. Sullivan, Differential forms and the topology of manifolds, Manifolds Tokyo 1973, ed. A. Hattori, Tokyo, University of Tokyo Press, 1975. | MR | Zbl

[23] M. Vigue-Poirrier - D. Sullivan, The Homology of the closed geodesic problem, J. Diff. Geometry 11 (1976), pp. 633-644. | MR | Zbl

[24] E. Spanier, Algebraic Topology, McGraw Hill. | MR | Zbl

[25] C. Viterbo, A proof of the Weinstein Conjecture in R 2n, Analyse nonlineaire 4 (1987), pp. 337-356. | Numdam | MR | Zbl

[26] C. Viterbo, Une théorie de Morse pour les systemes hamiltoniens étoilés, in preparation.

[27] A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math. 108 (1978), pp. 507-518. | MR | Zbl

[28] A. Weinstein, On the hypotheses of Rabinowitz' periodic orbit theorems, J. Diff. Eq. 33 (1979), pp. 353-358. | MR | Zbl

[29] R. Bott, Morse theory old and new, BAMS Vol. 7 No. 2 (1982), pp. 331-358. | MR | Zbl

[30] Adams, Sobolevspaces, Academic Press, New York, 1975. | Zbl