@article{ASNSP_1989_4_16_3_331_0, author = {Mancini, Giovanni and Musina, Roberta}, title = {Surfaces of minimal area enclosing a given body in $\mathbb {R}^3$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {331--354}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 16}, number = {3}, year = {1989}, mrnumber = {1050330}, zbl = {0746.49029}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1989_4_16_3_331_0/} }
TY - JOUR AU - Mancini, Giovanni AU - Musina, Roberta TI - Surfaces of minimal area enclosing a given body in $\mathbb {R}^3$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1989 SP - 331 EP - 354 VL - 16 IS - 3 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1989_4_16_3_331_0/ LA - en ID - ASNSP_1989_4_16_3_331_0 ER -
%0 Journal Article %A Mancini, Giovanni %A Musina, Roberta %T Surfaces of minimal area enclosing a given body in $\mathbb {R}^3$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1989 %P 331-354 %V 16 %N 3 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1989_4_16_3_331_0/ %G en %F ASNSP_1989_4_16_3_331_0
Mancini, Giovanni; Musina, Roberta. Surfaces of minimal area enclosing a given body in $\mathbb {R}^3$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 16 (1989) no. 3, pp. 331-354. http://archive.numdam.org/item/ASNSP_1989_4_16_3_331_0/
[1] Large solutions for harmonic maps in two dimensions, Comm. Math. Phys. 92 (1983), pp. 203-215. | MR | Zbl
- ,[2] Multiple solutions of H-systems and Rellich's conjecture, Comm. Pure Appl. Math. 37 (1984), pp. 149-187. | MR | Zbl
- ,[3] Convergence of solutions of H-systems, or how to blow up bubbles, Arch. Rational Mech. Anal. 89 (1985), pp. 21-56. | MR | Zbl
- ,[4] Harmonic maps with defects, Comm. Math. Phys. 107 (1986), pp. 649-705. | MR | Zbl
- - ,[5] Dirichlet's Principle, conformal mapping and minimal surfaces, Interscience, New York, 1950. | MR | Zbl
,[6] Problemi di superfici minime con ostacoli: forma non cartesiana, Boll. U.M.I. 8 (1973), pp. 80-88. | MR | Zbl
,[7] Variational inequalities and harmonic mappings, J. Reine Angewandte Math. 374 (1987), pp. 39-60. | EuDML | MR | Zbl
,[8] Boundary behaviour of minimal surfaces, Arc. Rat. Mech. Anal. 35 (1969), pp. 47-82. | MR | Zbl
,[9] On the regularity of solutions of two-dimensional variational problems with obstructions, Comm. Pure Appl. Math. 25 (1972), pp. 479-496. | MR | Zbl
,[10] Applications harmoniques de surfaces Riemanniennes, J. Diff. Geometry 13 (1978), pp. 51-78. | MR | Zbl
,[11] The concentration-compactness principle in the Calculus of Variations: the limit case, Rev. Mat. Iberoamericana 1 (1985), pp. 145-201 vol. 1 and pp. 45-121 vol. 2. | MR | Zbl
,[12] Frontiere minimali con ostacoli, Ann. Univ. Ferrara, Sez. VII, Sc. Mat. 16 (1971), pp. 29-37. | MR | Zbl
,[13] The problem of Plateau in a Riemannian manifold, Ann. of Math. 49 (1948), pp. 807-851. | MR | Zbl
,[14] Ph.D. Thesis, in preparation.
,[15] Topics in Nonlinear Functional Analysis, Courant Institute, New York. | MR | Zbl
,[16] Vorlesungen über Minimalflächen, Springer, Berlin 1975. | MR | Zbl
,[17] The existence of minimal immersions of 2-spheres, Annals of Math. 113 (1981), pp. 1-24. | MR | Zbl
- ,[18] Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geometry 18 (1983), pp. 253-268. | MR | Zbl
- ,[19] Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature, Annals of Math. 110 (1979), pp. 127-142. | MR | Zbl
- ,[20] Variationsprobleme vom Dirichlet-typ mit einer Ungleichung als Nebenbedingung, Math. Z. 128 (1972), pp. 43-74. | MR | Zbl
,[21] An existence theorem for surfaces of constant mean curvature, J. Math. Analysis and Appl. 26 (1969), pp. 318-344. | MR | Zbl
,[22] The differential equation Δx = 2Hx u ^ xv with vanishing boundary values, Proc. A.M.S. 50 (1975), pp. 131-137. | Zbl
,[23] Large solutions to the Volume Constrained Plateau Problem, Arch. Rat. Mech. and Analysis 75 (1980), pp. 59-77. | MR | Zbl
,