The existence of nonminimal regular harmonic maps from B 3 to S 2
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 16 (1989) no. 3, pp. 355-365.
@article{ASNSP_1989_4_16_3_355_0,
     author = {Zhang, Dong},
     title = {The existence of nonminimal regular harmonic maps from $B^3$ to $S^2$},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {355--365},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 16},
     number = {3},
     year = {1989},
     zbl = {0701.58017},
     mrnumber = {1050331},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1989_4_16_3_355_0/}
}
TY  - JOUR
AU  - Zhang, Dong
TI  - The existence of nonminimal regular harmonic maps from $B^3$ to $S^2$
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1989
DA  - 1989///
SP  - 355
EP  - 365
VL  - Ser. 4, 16
IS  - 3
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1989_4_16_3_355_0/
UR  - https://zbmath.org/?q=an%3A0701.58017
UR  - https://www.ams.org/mathscinet-getitem?mr=1050331
LA  - en
ID  - ASNSP_1989_4_16_3_355_0
ER  - 
%0 Journal Article
%A Zhang, Dong
%T The existence of nonminimal regular harmonic maps from $B^3$ to $S^2$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1989
%P 355-365
%V Ser. 4, 16
%N 3
%I Scuola normale superiore
%G en
%F ASNSP_1989_4_16_3_355_0
Zhang, Dong. The existence of nonminimal regular harmonic maps from $B^3$ to $S^2$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 16 (1989) no. 3, pp. 355-365. http://archive.numdam.org/item/ASNSP_1989_4_16_3_355_0/

[ABL] F. Almgrenjr. - W. Browder - E. Lieb, Co-area, liquid crystals, and minimal surfaces, A selection of papers, Springer, New York, 1987. | MR

[AL] F. Almgrenjr. - E. Lieb, Minimizing harmonic mappings: bounds on the number of singularities and examples (including symmetry breaking), Preprint.

[BC] H. Brézis - J. Coron, Large solutions for harmonic maps in two dimensions, Comm. Math. Physics 92 (1983), pp. 203-215. | MR | Zbl

[BCL] H. Brézis - J. Coron - E. Lieb, Harmonic maps with defects, Preprint.

[deG] P. De Gennes, The physics of liquid crystals, Oxford: Clarendon Press 1974.

[ES] J. Eellsjr. - J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), pp. 109-160. | MR | Zbl

[E] J. Ericksen, Equilibrium theory of liquid crystals. In: Advances in liquid crystals, 2, pp. 233-299; Brown, G.H. (ed) New York: Academic Press 1976.

[H] S. Hildebrandt, Proceedings of the 1980, Beijing Symposium on Differential Geometry and Equations. I, pp. 481-616. | Zbl

[HKW1] S. Hildebrandt - H. Kaul - K.O. Widman, Harmonic maps into Riemannian manifolds with non-positive sectional curvature, Math. Scand. 37 (1975), pp. 257-263. | MR | Zbl

[HKW2] S. Hildebrandt - H. Kaul - K.O. Widman, An existence theory for harmonic mappings of Riemannian manifolds, Acta Math. 138 (1977), pp. 1-16. | MR | Zbl

[HL1] R. Hardt - F.H. Lin, A remark on H1 mappings of Riemannian manifolds, Manuscripta Math. 56 (1986), pp. 1-10. | MR | Zbl

[HL2] R. Hardt - F.H. Lin, Stability of singularities of minimizing harmonic maps, Preprint. | MR

[HKL1] R. Hardt - D. Kinderlehrer - F.H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Physics. 105 (1986), pp. 189-194. | MR | Zbl

[HKL2] R. Hardt - D. Kinderlehrer - F.H. Lin, Stable defects of minimizers of constrained variational principles, IMA Preprint.

[M] C.B. Morreyjr., Multiple integrals in the calculus of variations, Springer-Verlag, Heildelberg and New York, 1966. | MR | Zbl

[SU1] R. Schoen - K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom. 60 (1984), pp. 307-335. | MR | Zbl

[SU2] R. Schoen - K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom. 18, pp. 253-268. | MR | Zbl

[SU3] R. Schoen - K. Uhlenbeck, Regularity of minimizing harmonic maps into sphere, Inv. Math. 78, (1984), pp. 89-100. | MR | Zbl