@article{ASNSP_1989_4_16_4_527_0, author = {Moutoussamy, Isabelle and Veron, Laurent}, title = {Source type positive solutions of nonlinear parabolic inequalities}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {527--555}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 16}, number = {4}, year = {1989}, mrnumber = {1052733}, zbl = {0733.35010}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1989_4_16_4_527_0/} }
TY - JOUR AU - Moutoussamy, Isabelle AU - Veron, Laurent TI - Source type positive solutions of nonlinear parabolic inequalities JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1989 SP - 527 EP - 555 VL - 16 IS - 4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1989_4_16_4_527_0/ LA - en ID - ASNSP_1989_4_16_4_527_0 ER -
%0 Journal Article %A Moutoussamy, Isabelle %A Veron, Laurent %T Source type positive solutions of nonlinear parabolic inequalities %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1989 %P 527-555 %V 16 %N 4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1989_4_16_4_527_0/ %G en %F ASNSP_1989_4_16_4_527_0
Moutoussamy, Isabelle; Veron, Laurent. Source type positive solutions of nonlinear parabolic inequalities. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 16 (1989) no. 4, pp. 527-555. http://archive.numdam.org/item/ASNSP_1989_4_16_4_527_0/
[1] Local behaviour of solutions of quasilinear parabolic equations, Arch. Rat. Mech. Anal., 25 (1967), 81-122. | MR | Zbl
- ,[2] Local behaviour of solutions of some elliptic equations, Comm. Math. Phys. 108 (1987), 177-192. | MR | Zbl
,[3] Compacité de l'opérateur définissant la solution d' une équation d'évolution non homogène, C.R. Acad. Sci. Paris t. 284 ser. A (1977), 799-802. | MR | Zbl
- - ,[4] Problèmes paraboliques semilinéaires avec données mesures, Appl. Anal. (1986). | Zbl
- ,[5] Critère d' existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré, Anal. Non-linéaire 2 (1985), 185-212. | Numdam | MR | Zbl
- ,[6] Nonlinear parabolic equations involving measure as initial conditions, Jl. Math. Pures & Appl. 62 (1983), 73-97. | MR | Zbl
- ,[7] A note on isolated singularities for linear elliptic equations, Mathematical Analysis & Applications 7A (1981), 263-266. | MR | Zbl
- ,[8] A very singular solution of the heat equation with absorption, Arch. Rat. Mech. Anal. 95 (1986), 185-209. | MR | Zbl
- - ,[9] Anisotropic singularities of nonlinear elliptic equations in R2, Jl. Funct. Anal., 83 (1989), 50-97. | MR | Zbl
- - ,[10] Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1980), 525-598. | MR | Zbl
- ,[11] Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297-319. | MR | Zbl
- ,[12] Non-uniqueness for a semilinear initial value problem, Ind. Univ. Math. J1. 31 (1982), 167-189. | MR | Zbl
- ,[13] Singular solutions of the heat equation with absorption, Proc. Amer. Math. Soc. 95 (1985), 205-210. | MR | Zbl
- ,[14] Existence and uniqueness of the very singular solution of the porous media equation with absorption, Jl. d'Analyse Math. 51 (1988), 245-258. | MR | Zbl
- ,[15] Linear and quasilinear equations of parabolic type, Vol. 23, Trans. of Math. Mon., A.M.S. Providence (1968). | MR | Zbl
- - ,[16] Isolated singularities in semilinear problems, J. Diff. Equ. 38 (1980), 441-450. | MR | Zbl
,[17] Symétries et singularités de solutions d' équations paraboliques semi-linéaires, Ph. D. Thesis, Université de Tours (1987).
,[18] Isolated singularities of a semilinear heat equation, in preparation.
- ,[19] Isolated, positive singularities for a nonlinear heat equation, Houston Jl. Math. (to appear). | MR | Zbl
,[20] Isotropic singularities of solutions of nonlinear elliptic inequalities, Ann. Inst. H. Poincaré, Anal. Nonlinéaire, 6 (1989), 37-72. | Numdam | MR | Zbl
- ,[21] Asymptotic analysis of an ordinary differential equation and non-uniqueness for a semilinear partial differential equation, Arch. Rat. Mech. Anal. 91 (1986), 231-245. | MR | Zbl
,[22] Rapidly decaying solutions of an ordinary differential equation with applications to semilinear elliptic and parabolic partial differential equations, Arch. Rat. Mech. Anal. 91 (1986), 247-266. | MR | Zbl
,