@article{ASNSP_1990_4_17_1_35_0, author = {Long, Yiming}, title = {Periodic solutions of perturbed superquadratic hamiltonian systems}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {35--77}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 17}, number = {1}, year = {1990}, mrnumber = {1074626}, zbl = {0724.34052}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1990_4_17_1_35_0/} }
TY - JOUR AU - Long, Yiming TI - Periodic solutions of perturbed superquadratic hamiltonian systems JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1990 SP - 35 EP - 77 VL - 17 IS - 1 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1990_4_17_1_35_0/ LA - en ID - ASNSP_1990_4_17_1_35_0 ER -
%0 Journal Article %A Long, Yiming %T Periodic solutions of perturbed superquadratic hamiltonian systems %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1990 %P 35-77 %V 17 %N 1 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1990_4_17_1_35_0/ %G en %F ASNSP_1990_4_17_1_35_0
Long, Yiming. Periodic solutions of perturbed superquadratic hamiltonian systems. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 17 (1990) no. 1, pp. 35-77. http://archive.numdam.org/item/ASNSP_1990_4_17_1_35_0/
[1] A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 167 (1981), 1-32. | MR | Zbl
- ,[2] Forced vibrations of superquadratic Hamiltonian systems, Acta Math. 152 (1984), 143-197. | MR | Zbl
- ,[3] Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Appl. Math. 37 (1984), 403-442. | MR | Zbl
- ,[4] On critical points theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274 (1982), 533-572. | MR | Zbl
,[5] Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), 241-273. | MR | Zbl
- ,[6] A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations 5(7), (1980), 773-789. | MR | Zbl
- ,[7] An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367. | MR | Zbl
,[8] Borsuk-Ulam theorems for arbitrary S1-actions and applications, Trans. Amer. Math. Soc. 174 (1982), 345-360. | MR | Zbl
- - ,[9] Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), 139-174. | MR | Zbl
- ,[10] Convex Functions and Orlicz Spaces, Hindustan Publ. Co. (India) Delhi (1962).
- ,[11] On the density of the range for some superquadratic operators, MRC Technical Summary Report 2859, University of Wisconsin-Madison (1985).
,[12] Multiple solutions of perturbed superquadratic second order Hamiltonian systems, MRC Technical Summary Report 2963, University of Wisconsin-Madison (1987). Trans. Amer. Math. Soc. 311 (1989), 749-780. | MR | Zbl
,[13] Doctoral thesis, University of Wisconsin-Madison, 1987.
,[14] Theory of Functions of a Real Variable, Vol. 1. Frederick Ungar Publ. Co. New York (1964). Revised Edition. | MR
,[ 15] Existence of infinitely many periodic solutions for a perturbed Hamiltonian system, Nonlinear Anal. T.M. & A. 8 (1984), 873-891. | MR | Zbl
- ,[16] Variational methods for nonlinear eigenvalue problems, In Eigenvalues of Nonlinear Problems. Roma (1974). Ediz. Cremonese. | MR
,[17] Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157-184. | MR | Zbl
,[18] Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc. 272 (1982), 753-769. | MR | Zbl
,[19] Periodic solutions of large norm of Hamiltonian systems, J. Differential Equations 50 (1983), 33-48. | MR | Zbl
,