@article{ASNSP_1996_4_23_1_179_0, author = {Horowitz, C. and Korenblum, B. and Pinchuk, B.}, title = {Extremal functions and contractive divisors in $A^{-n}$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {179--191}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 23}, number = {1}, year = {1996}, mrnumber = {1401422}, zbl = {0866.30039}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1996_4_23_1_179_0/} }
TY - JOUR AU - Horowitz, C. AU - Korenblum, B. AU - Pinchuk, B. TI - Extremal functions and contractive divisors in $A^{-n}$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1996 SP - 179 EP - 191 VL - 23 IS - 1 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1996_4_23_1_179_0/ LA - en ID - ASNSP_1996_4_23_1_179_0 ER -
%0 Journal Article %A Horowitz, C. %A Korenblum, B. %A Pinchuk, B. %T Extremal functions and contractive divisors in $A^{-n}$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1996 %P 179-191 %V 23 %N 1 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1996_4_23_1_179_0/ %G en %F ASNSP_1996_4_23_1_179_0
Horowitz, C.; Korenblum, B.; Pinchuk, B. Extremal functions and contractive divisors in $A^{-n}$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 23 (1996) no. 1, pp. 179-191. http://archive.numdam.org/item/ASNSP_1996_4_23_1_179_0/
[1] The Schwarz Function and Its Applications, Carus Math. Monographs, vol. 27, Math. Assoc. of America. | MR | Zbl
,[2] Contractive zero divisors in Bergman spaces, Pacific J. Math 157 (1993), 37-56. | MR | Zbl
- - - ,[3] A factorization theorem for square area-integrable analytic functions, J. Reine Angew. Math. 422 (1991), 45-68. | MR | Zbl
,[4] Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1973. | MR | Zbl
,[5] Beurling type density theorems in the unit disck, Invent. Math. 113 (1993), 21-39. | MR | Zbl
,[6] The Schwarz function and its generalization to higher dimensions, Univ. of Arkansas Lecture Notes in Math. Sciences, vol. 9, John Wiley and Sons, New York, 1992. | MR | Zbl
,