Asymptotic stability for perturbed hamiltonian systems, II
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 23 (1996) no. 3, pp. 531-549.
@article{ASNSP_1996_4_23_3_531_0,
     author = {Leoni, Giovanni},
     title = {Asymptotic stability for perturbed hamiltonian systems, {II}},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {531--549},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 23},
     number = {3},
     year = {1996},
     mrnumber = {1440032},
     zbl = {0886.58097},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1996_4_23_3_531_0/}
}
TY  - JOUR
AU  - Leoni, Giovanni
TI  - Asymptotic stability for perturbed hamiltonian systems, II
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1996
SP  - 531
EP  - 549
VL  - 23
IS  - 3
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1996_4_23_3_531_0/
LA  - en
ID  - ASNSP_1996_4_23_3_531_0
ER  - 
%0 Journal Article
%A Leoni, Giovanni
%T Asymptotic stability for perturbed hamiltonian systems, II
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1996
%P 531-549
%V 23
%N 3
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1996_4_23_3_531_0/
%G en
%F ASNSP_1996_4_23_3_531_0
Leoni, Giovanni. Asymptotic stability for perturbed hamiltonian systems, II. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 23 (1996) no. 3, pp. 531-549. http://archive.numdam.org/item/ASNSP_1996_4_23_3_531_0/

[1] A. Artestein - E.F. Infante, On the asymptotic stability of oscillators with unbounded damping, Quart. Appl. Math. 34 (1976), 195-199. | MR | Zbl

[2] R.J. Ballieu - K. Peiffer, Attractivity of the origin for the equation x + f (t, x, x) |x|α + g(x) = 0, J. Math. Anal. Appl. 65 (1978), 321-332. | Zbl

[3] T.A. Burton, On the equation x'' + f(x)h(x')x'+ g(x) = e(t), Ann. Math. Pura Appl. 85 (1970), 227-285. | MR | Zbl

[4] E.A. Coddington - N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. | MR | Zbl

[5] R.J. Duffin, Stability of systems with nonlinear damping, J. Math. Anal. Appl. 23 (1968), 428-439. | MR | Zbl

[6] L. Hatvani, Nonlinear oscillation with large damping, Dynamical Systems and Applications 1 (1992), 257-270. | MR | Zbl

[7] V. Lakshmikantham - V.M. Matrosov - S. Sivasundaram, Vector Liapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Pub., 1991. | MR | Zbl

[8] G. Leoni, A note on a theorem of Pucci& Serrin, J. Differential Equations 113 (1994), 535-542. | MR | Zbl

[9] G. Leoni, Asymptotic stability for perturbed Hamiltonian systems, Arch. Rational Mech. Anal. 128 (1994), 105-125. | MR | Zbl

[10] G. Leoni, Existence and asymptotic stability for perturbed Lagrangian and Hamiltonian systems, (1995), Ph.D. thesis, University of Minesota.

[11] G. Leoni - M. Manfredini - P. Pucci, Stability properties for solutions of general Euler-Lagrange systems, Differential Integral Equations 5 (1992), 537-552. | MR | Zbl

[12] J.J. Levin - J.A. Nohel, Global asymptotic stability for nonlinear systems of differential equations and applications to reactor dynamics, Arch. Rational Mech. Anal. 5 (1960), 194-211. | MR | Zbl

[13] L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1992. | Zbl

[14] P. Pucci - J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), 681-703. | MR | Zbl

[15] P. Pucci - J. Serrin, Asymptotic stability for non-autonomous damped wave systems, Comm. Pure Appl. Math. 49 (1996), 177-216. | MR | Zbl

[16] P. Pucci - J. Serrin, Asymptotic stability for nonlinear parabolic systems, Proc. of Conference on "Energy Methods in Continuum Mechanics", Kluwer Pl., 1995. | MR | Zbl

[17] P. Pucci - J. Serrin, On the derivation of Hamiltonian's equations, Arch. Rational Mech. Anal. 125 (1994), 297-310. | MR | Zbl

[18] P. Pucci - J. Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems, Acta Math. 170 (1993), 275-307. | MR | Zbl

[19] P. Pucci - J. Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems, II, J. Differential Equations 113 (1994), 505-534. | MR | Zbl

[20] P. Pucci - J. Serrin, Remarks on Lyapunov stability, Differential Integral Equations 8 (1995), 1265-1277. | MR | Zbl

[21] L. Salvatori, Famiglie ad un parametro di funzioni di Liapunov nello studio della stabilitĂ , Symposia Math. Pubbl. INDAM 6 (1971), 309-330. | MR | Zbl

[22] R.A. Smith, Asymptotic stability of x'' + a(t)x' + x = 0, Quart. J. Math. Oxford 12 (1961), 123-126. | MR | Zbl

[23] M. Takegaki - S. Arimoto, A new feedback method for dynamic control of manipulators, J. Dyn. Systems, Meas. Control 103 (1981), 119-125. | Zbl

[24] L.H. Thurston - J.W. Wong, On global asymptotic stability of certain second order differential equations with integrable forcing terms, SIAM J. Appl. Math. 24 (1973), 50-61. | MR | Zbl

[25] A.J. Der Schaft, Stabilization of Hamiltonian systems, Nonlinear Anal. 10 (1986), 1021-1035. | MR | Zbl

[26] T. Yoshizawa, Asymptotic behavior of solutions of a system of differential equations, Contributions to Differential Equations 1 (1963), 371-387. | MR | Zbl