@article{ASNSP_1996_4_23_3_531_0, author = {Leoni, Giovanni}, title = {Asymptotic stability for perturbed hamiltonian systems, {II}}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {531--549}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 23}, number = {3}, year = {1996}, mrnumber = {1440032}, zbl = {0886.58097}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1996_4_23_3_531_0/} }
TY - JOUR AU - Leoni, Giovanni TI - Asymptotic stability for perturbed hamiltonian systems, II JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1996 SP - 531 EP - 549 VL - 23 IS - 3 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1996_4_23_3_531_0/ LA - en ID - ASNSP_1996_4_23_3_531_0 ER -
%0 Journal Article %A Leoni, Giovanni %T Asymptotic stability for perturbed hamiltonian systems, II %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1996 %P 531-549 %V 23 %N 3 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1996_4_23_3_531_0/ %G en %F ASNSP_1996_4_23_3_531_0
Leoni, Giovanni. Asymptotic stability for perturbed hamiltonian systems, II. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 23 (1996) no. 3, pp. 531-549. http://archive.numdam.org/item/ASNSP_1996_4_23_3_531_0/
[1] On the asymptotic stability of oscillators with unbounded damping, Quart. Appl. Math. 34 (1976), 195-199. | MR | Zbl
- ,[2] Attractivity of the origin for the equation x + f (t, x, x) |x|α + g(x) = 0, J. Math. Anal. Appl. 65 (1978), 321-332. | Zbl
- ,[3] On the equation x'' + f(x)h(x')x'+ g(x) = e(t), Ann. Math. Pura Appl. 85 (1970), 227-285. | MR | Zbl
,[4] Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. | MR | Zbl
- ,[5] Stability of systems with nonlinear damping, J. Math. Anal. Appl. 23 (1968), 428-439. | MR | Zbl
,[6] Nonlinear oscillation with large damping, Dynamical Systems and Applications 1 (1992), 257-270. | MR | Zbl
,[7] Vector Liapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Pub., 1991. | MR | Zbl
- - ,[8] A note on a theorem of Pucci& Serrin, J. Differential Equations 113 (1994), 535-542. | MR | Zbl
,[9] Asymptotic stability for perturbed Hamiltonian systems, Arch. Rational Mech. Anal. 128 (1994), 105-125. | MR | Zbl
,[10] Existence and asymptotic stability for perturbed Lagrangian and Hamiltonian systems, (1995), Ph.D. thesis, University of Minesota.
,[11] Stability properties for solutions of general Euler-Lagrange systems, Differential Integral Equations 5 (1992), 537-552. | MR | Zbl
- - ,[12] Global asymptotic stability for nonlinear systems of differential equations and applications to reactor dynamics, Arch. Rational Mech. Anal. 5 (1960), 194-211. | MR | Zbl
- ,[13] Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1992. | Zbl
,[14] A general variational identity, Indiana Univ. Math. J. 35 (1986), 681-703. | MR | Zbl
- ,[15] Asymptotic stability for non-autonomous damped wave systems, Comm. Pure Appl. Math. 49 (1996), 177-216. | MR | Zbl
- ,[16] Asymptotic stability for nonlinear parabolic systems, Proc. of Conference on "Energy Methods in Continuum Mechanics", Kluwer Pl., 1995. | MR | Zbl
- ,[17] On the derivation of Hamiltonian's equations, Arch. Rational Mech. Anal. 125 (1994), 297-310. | MR | Zbl
- ,[18] Precise damping conditions for global asymptotic stability for nonlinear second order systems, Acta Math. 170 (1993), 275-307. | MR | Zbl
- ,[19] Precise damping conditions for global asymptotic stability for nonlinear second order systems, II, J. Differential Equations 113 (1994), 505-534. | MR | Zbl
- ,[20] Remarks on Lyapunov stability, Differential Integral Equations 8 (1995), 1265-1277. | MR | Zbl
- ,[21] Famiglie ad un parametro di funzioni di Liapunov nello studio della stabilitĂ , Symposia Math. Pubbl. INDAM 6 (1971), 309-330. | MR | Zbl
,[22] Asymptotic stability of x'' + a(t)x' + x = 0, Quart. J. Math. Oxford 12 (1961), 123-126. | MR | Zbl
,[23] A new feedback method for dynamic control of manipulators, J. Dyn. Systems, Meas. Control 103 (1981), 119-125. | Zbl
- ,[24] On global asymptotic stability of certain second order differential equations with integrable forcing terms, SIAM J. Appl. Math. 24 (1973), 50-61. | MR | Zbl
- ,[25] Stabilization of Hamiltonian systems, Nonlinear Anal. 10 (1986), 1021-1035. | MR | Zbl
,[26] Asymptotic behavior of solutions of a system of differential equations, Contributions to Differential Equations 1 (1963), 371-387. | MR | Zbl
,