Rational points of a curve which has a nontrivial automorphism
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 24 (1997) no. 3, pp. 551-569.
@article{ASNSP_1997_4_24_3_551_0,
     author = {Fujimori, Masami},
     title = {Rational points of a curve which has a nontrivial automorphism},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {551--569},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 24},
     number = {3},
     year = {1997},
     mrnumber = {1612405},
     zbl = {0916.11035},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1997_4_24_3_551_0/}
}
TY  - JOUR
AU  - Fujimori, Masami
TI  - Rational points of a curve which has a nontrivial automorphism
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1997
SP  - 551
EP  - 569
VL  - 24
IS  - 3
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1997_4_24_3_551_0/
LA  - en
ID  - ASNSP_1997_4_24_3_551_0
ER  - 
%0 Journal Article
%A Fujimori, Masami
%T Rational points of a curve which has a nontrivial automorphism
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1997
%P 551-569
%V 24
%N 3
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1997_4_24_3_551_0/
%G en
%F ASNSP_1997_4_24_3_551_0
Fujimori, Masami. Rational points of a curve which has a nontrivial automorphism. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 24 (1997) no. 3, pp. 551-569. http://archive.numdam.org/item/ASNSP_1997_4_24_3_551_0/

[1] V.A. Dem'Yanenko, Rational points of a class of algebraic curves, Amer. Math. Soc. Transl. Series 2, 66 (1968), 246-272. | Zbl

[2] M. Fujimori, On the solutions of Thue equations, TĂ´hoku Math. J. 46 (1994), 523-539. Correction and supplement, 2 pages, 1996. | MR | Zbl

[3] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52Springer-Verlag, New York, 1977. | MR | Zbl

[4] S. Lang, Fundamentals of Diophantine Geometry, Springer-Verlag, New York, 1983. | MR | Zbl

[5] Yu. I. Manin, The Tate height ofpoints on an abelian variety. Its variants and applications, Amer. Math. Soc. Trans1. Series 2, 59 (1966), 82-110. | Zbl

[6] Yu.I. Manin, The refined structure of the Neron-Tate height, Math. USSR-Sb. 12 (1970), 325-342. | Zbl

[7] J.S. Milne, Abelian varieties, In G. Cornell and J.H. Silverman, editors, "Arithmetic Geometry", pages 103-150, Storrs Conn. 1984, 1986. Springer-Verlag, New York. | MR | Zbl

[8] J.S. Milne, Jacobian varieties, In G. Cornell and J. H. Silverman, editors, " Arithmetic Geometry", pages 167-212, Storrs Conn. 1984, 1986. Springer-Verlag, New York. | MR | Zbl

[9] J.-P. Serre, Lectures on the Mordell-Weil Theorem, Aspects of Mathematics. E15 Friedr. Vieweg & Sohn, Braunschweig, 2nd edition, 1990. | MR | Zbl