@article{ASNSP_1997_4_24_3_551_0, author = {Fujimori, Masami}, title = {Rational points of a curve which has a nontrivial automorphism}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {551--569}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 24}, number = {3}, year = {1997}, mrnumber = {1612405}, zbl = {0916.11035}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1997_4_24_3_551_0/} }
TY - JOUR AU - Fujimori, Masami TI - Rational points of a curve which has a nontrivial automorphism JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1997 SP - 551 EP - 569 VL - 24 IS - 3 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1997_4_24_3_551_0/ LA - en ID - ASNSP_1997_4_24_3_551_0 ER -
%0 Journal Article %A Fujimori, Masami %T Rational points of a curve which has a nontrivial automorphism %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1997 %P 551-569 %V 24 %N 3 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1997_4_24_3_551_0/ %G en %F ASNSP_1997_4_24_3_551_0
Fujimori, Masami. Rational points of a curve which has a nontrivial automorphism. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 24 (1997) no. 3, pp. 551-569. http://archive.numdam.org/item/ASNSP_1997_4_24_3_551_0/
[1] Rational points of a class of algebraic curves, Amer. Math. Soc. Transl. Series 2, 66 (1968), 246-272. | Zbl
,[2] On the solutions of Thue equations, TĂ´hoku Math. J. 46 (1994), 523-539. Correction and supplement, 2 pages, 1996. | MR | Zbl
,[3] Algebraic Geometry, Graduate Texts in Math. 52Springer-Verlag, New York, 1977. | MR | Zbl
,[4] Fundamentals of Diophantine Geometry, Springer-Verlag, New York, 1983. | MR | Zbl
,[5] The Tate height ofpoints on an abelian variety. Its variants and applications, Amer. Math. Soc. Trans1. Series 2, 59 (1966), 82-110. | Zbl
,[6] The refined structure of the Neron-Tate height, Math. USSR-Sb. 12 (1970), 325-342. | Zbl
,[7] Abelian varieties, In and , editors, "Arithmetic Geometry", pages 103-150, Storrs Conn. 1984, 1986. Springer-Verlag, New York. | MR | Zbl
,[8] Jacobian varieties, In G. Cornell and J. H. Silverman, editors, " Arithmetic Geometry", pages 167-212, Storrs Conn. 1984, 1986. Springer-Verlag, New York. | MR | Zbl
,[9] Lectures on the Mordell-Weil Theorem, Aspects of Mathematics. E15 Friedr. Vieweg & Sohn, Braunschweig, 2nd edition, 1990. | MR | Zbl
,