@article{ASNSP_1998_4_26_1_97_0, author = {Bellettini, Giovanni and Novaga, Matteo}, title = {Comparison results between minimal barriers and viscosity solutions for geometric evolutions}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {97--131}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 26}, number = {1}, year = {1998}, mrnumber = {1632984}, zbl = {0904.35041}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1998_4_26_1_97_0/} }
TY - JOUR AU - Bellettini, Giovanni AU - Novaga, Matteo TI - Comparison results between minimal barriers and viscosity solutions for geometric evolutions JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1998 SP - 97 EP - 131 VL - 26 IS - 1 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1998_4_26_1_97_0/ LA - en ID - ASNSP_1998_4_26_1_97_0 ER -
%0 Journal Article %A Bellettini, Giovanni %A Novaga, Matteo %T Comparison results between minimal barriers and viscosity solutions for geometric evolutions %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1998 %P 97-131 %V 26 %N 1 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1998_4_26_1_97_0/ %G en %F ASNSP_1998_4_26_1_97_0
Bellettini, Giovanni; Novaga, Matteo. Comparison results between minimal barriers and viscosity solutions for geometric evolutions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 26 (1998) no. 1, pp. 97-131. http://archive.numdam.org/item/ASNSP_1998_4_26_1_97_0/
[1] A level set approach to the evolution of surfaces of any codimension, J. Differential Geom. 43 (1996), 693-737. | MR | Zbl
- ,[2] Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations 2 (1994), 151-171. | MR | Zbl
,[3] Contraction of convex hypersurfaces in Riemannian spaces, J. Differential Geom. 34 (1994), 407-431. | MR | Zbl
,[4] Front propagation and phase field theory, SIAM J. Control Optim. 31 (1993), 439-469. | MR | Zbl
- - ,[5] Alcuni risultati sulle minime barriere per movimenti geometrici di insiemi, Boll. Un. Mat. Ital. 11 (1997), 485-512. | Zbl
,[6] Minimal barriers for geometric evolutions, J. Differential Equations 139 (1997), 76-103. | MR | Zbl
- ,[7] Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature, Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 19 (1995), 43-67. | MR | Zbl
- ,[8] Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J. 25 (1996), 537-566. | MR | Zbl
- ,[9] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation, J. Differential Geom. 33 (1991), 749-786. | MR | Zbl
- - ,[10] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1-67. | MR | Zbl
- - ,[11] Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 227 (1983), 1-42. | MR | Zbl
- ,[12] Barriers, boundaries, motion of manifolds, Conference held at Dipartimento di Matematica of Pavia, March 18, 1994.
,[13] Motion of level sets by mean curvature I, J. Differential Geom. 33 (1991), 635-681. | MR | Zbl
- ,[14] Motion of level sets by mean curvature II, Trans. Amer. Math. Soc. 330 (1992), 321-332. | MR | Zbl
- ,[15] Geometric evolution of phase-boundaries, On the evolution of phase boundaries (M.E. Gurtin and G.B. MacFadden, eds.) vol. IMAVMA43, Springer-Verlag, New York, 1992, 51-65. | MR | Zbl
- ,[16] Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J. 40 (1991), 443-470. | MR | Zbl
- - - ,[17] Generalized motion of hypersurfaces whose growth speed depends superlinearly on the curvature tensor, Differential Integral Equations 7 (1994), 323-343. | MR | Zbl
,[18] Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), 237-266. | MR | Zbl
,[19] The inverse mean curvature flow and the Riemannian Penrose inequality, in preparation.
- ,[20] The level-set flow on a manifold, Proc. Symp. Pure Math. 54 (1993), 193-204. | MR | Zbl
,[21] Generalized flow of sets by mean curvature on a manifold, Indiana Univ. Math. J. 41 (1992), 671-705. | MR | Zbl
,[22] Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tohoku Math. J. 47 (1995), 227-250. | MR | Zbl
- ,[23] Generalized solutions of Hamilton-Jacobi equations", Pitman Research Notes in Mathematics, Boston, 1982. | MR | Zbl
, "[24] Analytic Semigroups and Optimal Regularity in Parabolic Problems", Birkhäuser, Boston, 1995. | MR | Zbl
, "[25] Motion of a set by the curvature of its boundary, J. Differential Equations 101 (1993), 313-372. | MR | Zbl
,