@article{ASNSP_1998_4_27_1_47_0, author = {Alessio, Francesca and Caldiroli, Paolo and Montecchiari, Piero}, title = {Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in $\mathbb {R}^N$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {47--68}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 27}, number = {1}, year = {1998}, mrnumber = {1658893}, zbl = {0931.35047}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1998_4_27_1_47_0/} }
TY - JOUR AU - Alessio, Francesca AU - Caldiroli, Paolo AU - Montecchiari, Piero TI - Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in $\mathbb {R}^N$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1998 SP - 47 EP - 68 VL - 27 IS - 1 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1998_4_27_1_47_0/ LA - en ID - ASNSP_1998_4_27_1_47_0 ER -
%0 Journal Article %A Alessio, Francesca %A Caldiroli, Paolo %A Montecchiari, Piero %T Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in $\mathbb {R}^N$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1998 %P 47-68 %V 27 %N 1 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1998_4_27_1_47_0/ %G en %F ASNSP_1998_4_27_1_47_0
Alessio, Francesca; Caldiroli, Paolo; Montecchiari, Piero. Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in $\mathbb {R}^N$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 27 (1998) no. 1, pp. 47-68. http://archive.numdam.org/item/ASNSP_1998_4_27_1_47_0/
[1] Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Differential Equations 96 (1992), 88-115. | MR | Zbl
- ,[2] Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. | EuDML | Numdam | MR | Zbl
- ,[3] Genericity of the multibump dynamics for almost periodic Duffing-like systems, Proc. Roy. Soc. Edinburgh Sect. A, to appear. | MR | Zbl
- - ,[4] Homoclinics: Poincarè-Melnikov type results via a variational approach, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 232-252. | EuDML | Numdam | MR | Zbl
- ,[5] Semiclassical states of nonlinear Schrodinger equation, Arch. Rational Mech. Anal. 140 (1997), 285-300. | MR | Zbl
- - ,[6] The Shadowing Lemma for Elliptic PDE, Dynamics of Infinite Dimensional Systems (S.N. Chow and J.K. Hale eds.) F37 (1987), 6-22. | MR | Zbl
,[7] On a AIin-Max Procedure for the Existence of a Positive Solution for Certain Scalar Field Equation in Rn, Rev. Mat. Iberoamericana 6 (1990), 1-15. | EuDML | MR | Zbl
- ,[8] On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 365-413. | EuDML | Numdam | MR | Zbl
- ,[9] Nonlinear scalar field equations, Arch. Rational Mech. Anal. 82 (1983), 313-345. | MR | Zbl
- ,[10] Almost Periodic Functions", Dover Pubblications Inc. (1954). | MR | Zbl
, "[11] Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in Rn, Nonlinear Anal. 15 (1990), 1045-1052. | MR | Zbl
,[12] Multiple solutions of a semilinear elliptic equation in Rn, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 593-604. | Numdam | MR | Zbl
,[13] Multiplicity of positive and nodal solutions for nonlinear elliptic problems in Rn, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 567-588. | Numdam | MR | Zbl
- ,[14] A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. 288 (1990), 133-160. | MR | Zbl
- - ,[15] Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math. 45 (1992), 1217-1269. | MR | Zbl
- ,[16] Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 127-149. | Numdam | MR | Zbl
- ,[17] On the existence of a positive entire solution of a semilinear elliptic equation, Arch. Rational Mech. Anal. 91 (1986), 283-308. | MR | Zbl
- ,[18] Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982), 1-14. | MR | Zbl
- ,[19] Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods, Comm. Partial Differential Equations 21 (1996), 787-820. | MR | Zbl
,[20] Remarks on a semilinear elliptic equation on RN, J. Differential Equations 74 (1988), 34-39. | MR | Zbl
,[21] Prescribing scalar curvature on S3,S4 and related problems, J. Funct. Anal. 118 (1993),43-118. | MR | Zbl
,[22] On a singularly perturbed elliptic equation, Adv. Differential Equations 2 (1997), 955-980. | MR | Zbl
,[23] The concentration-compactness principle in the calculus of variations: the locally compact case, Part I and II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145 and 223-283. | Numdam | Zbl
,[24] Multiplicity results for a class of Semilinear Elliptic Equations on Rm, Rend. Sem. Mat. Univ. Padova 95 (1996), 1-36. | Numdam | MR | Zbl
,[25] Multiple positive solutions of a scalar field equation in Rn, Topol. Methods Nonlinear Anal. 7 (1996), 171-185. | MR | Zbl
,[26] Some aspects of semilinear elliptic equations, Nonlinear diffusion equations and their equilibrium states (W.M. Ni, L.A. Peletier and J. Serrin, eds.) Springer Verlag, Berlin (1988), 171-215. | MR | Zbl
,[27] A note on a semilinear elliptic equation on Rn, Nonlinear Analysis, a tribute in honour of Giovanni Prodi (A. Ambrosetti and A. Marino, eds., Quademi della Scuola Normale Superiore, Pisa) (1991), 307-317. | MR | Zbl
,[28] On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270-291. | MR | Zbl
,[29] Looking for the Bernoulli shift, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 561-590. | Numdam | MR | Zbl
,[30] Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1979), 149-162. | MR | Zbl
,[31] Bifurcation in LP(Rn) for a semilinear elliptic equation, Proc. London Math. Soc. (3) 57 (1988), 511-541. | MR | Zbl
,