On the scattering in Gevrey classes for the subcritical Hartree and Schrödinger equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 27 (1998) no. 3-4, pp. 483-497.
@article{ASNSP_1998_4_27_3-4_483_0,
     author = {Hayashi, Nakao and Kato, Keiichi and Naumkin, Pavel I.},
     title = {On the scattering in {Gevrey} classes for the subcritical {Hartree} and {Schr\"odinger} equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {483--497},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 27},
     number = {3-4},
     year = {1998},
     mrnumber = {1677998},
     zbl = {0931.35161},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1998_4_27_3-4_483_0/}
}
TY  - JOUR
AU  - Hayashi, Nakao
AU  - Kato, Keiichi
AU  - Naumkin, Pavel I.
TI  - On the scattering in Gevrey classes for the subcritical Hartree and Schrödinger equations
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1998
SP  - 483
EP  - 497
VL  - 27
IS  - 3-4
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1998_4_27_3-4_483_0/
LA  - en
ID  - ASNSP_1998_4_27_3-4_483_0
ER  - 
%0 Journal Article
%A Hayashi, Nakao
%A Kato, Keiichi
%A Naumkin, Pavel I.
%T On the scattering in Gevrey classes for the subcritical Hartree and Schrödinger equations
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1998
%P 483-497
%V 27
%N 3-4
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1998_4_27_3-4_483_0/
%G en
%F ASNSP_1998_4_27_3-4_483_0
Hayashi, Nakao; Kato, Keiichi; Naumkin, Pavel I. On the scattering in Gevrey classes for the subcritical Hartree and Schrödinger equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 27 (1998) no. 3-4, pp. 483-497. http://archive.numdam.org/item/ASNSP_1998_4_27_3-4_483_0/

[1] T. Cazenave, "An Introduction to Nonlinear Schrödinger Equations ", Textos de Métodos Mathemáticos, 22 Univ. Federal do Rio de Janeiro, Instituto de Mathematica, 1989.

[2] T. Cazenave - F.B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in HS, Nonlinear Anal. 14 (1990), 807-836. | MR | Zbl

[3] P. D'Ancona - S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108 (1992), 253-277. | MR | Zbl

[4] J. Ginibre - T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n > 2, Comm. Math. Phys. 151 (1993), 619-645. | MR | Zbl

[5] J. Ginibre - G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case; II. Scattering theory, general case, J. Funct. Anal. 32 (1979), 1-71. | MR | Zbl

[6] N. Hayashi - E. Kaikina - P.I. Naumkin, On the scattering theory for the cubic nonlinear Schrödinger and Hartree type equations in one space dimension, Hokkaido Univ. Math. J. 27 (1998), 651-667. | MR | Zbl

[7] N. Hayashi - K. Kato, Global existence of small analytic solutions to Schrödinger equations with quadratic nonlinearity, Comm. Partial Differential Equations 22 (1997), 773-798. | MR | Zbl

[8] N. Hayashi - P.I. Naumkin, Asymptotics in large time of solutions to nonlinear Schrödinger and Hartree equations, Amer. J. Math. 120 (1998), 369-389. | MR | Zbl

[9] N. Hayashi - P.I. Naumkin, Scattering theory and large time asymptotics of solutions to the Hartree type equation with a long range potential, Preprint (1997). | MR

[10] N. Hayashi - T. Ozawa, Scattering theory in the weighted L2(Rn) spaces for some Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 48 (1988), 17-37. | Numdam | MR | Zbl

[11] H. Hirata, The Cauchy problem for Hartree type Schrödinger equation in weighted Sobolev space, J. Faculty of Science, Univ. Tokyo, Sec IA 38 (1988), 567-588. | MR | Zbl

[12] T. Kato - K. Masuda, Nonlinear evolution equations and analyticity I, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), 455-467. | Numdam | MR | Zbl

[13] P.I. Naumkin, Asymptotics for large time of solutions to nonlinear Schrödinger equation, Izvestia 61, n° 4 (1997), 81-118. | MR | Zbl

[14] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Comm. Math. Phys. 139 (1991), 479-493. | MR | Zbl