A parabolic quasi-variational inequality arising in a superconductivity model
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 29 (2000) no. 1, pp. 153-169.
@article{ASNSP_2000_4_29_1_153_0,
     author = {Rodrigues, Jos\'e Francisco and Santos, Lisa},
     title = {A parabolic quasi-variational inequality arising in a superconductivity model},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {153--169},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 29},
     number = {1},
     year = {2000},
     mrnumber = {1765540},
     zbl = {0953.35079},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2000_4_29_1_153_0/}
}
TY  - JOUR
AU  - Rodrigues, José Francisco
AU  - Santos, Lisa
TI  - A parabolic quasi-variational inequality arising in a superconductivity model
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2000
SP  - 153
EP  - 169
VL  - 29
IS  - 1
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_2000_4_29_1_153_0/
LA  - en
ID  - ASNSP_2000_4_29_1_153_0
ER  - 
%0 Journal Article
%A Rodrigues, José Francisco
%A Santos, Lisa
%T A parabolic quasi-variational inequality arising in a superconductivity model
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2000
%P 153-169
%V 29
%N 1
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_2000_4_29_1_153_0/
%G en
%F ASNSP_2000_4_29_1_153_0
Rodrigues, José Francisco; Santos, Lisa. A parabolic quasi-variational inequality arising in a superconductivity model. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 29 (2000) no. 1, pp. 153-169. http://archive.numdam.org/item/ASNSP_2000_4_29_1_153_0/

[1] C. Baiocchi - A. Capelo, "Variational and Quasivariational Inequalities. Applications to Free Boundary Problems", J. Wiley & Sons, Chischester-New York, 1984. | MR | Zbl

[2] A. Bensoussan - J.L. Lions, "Contrôle impulsionel et inéquations quasivariationelles", Dunod, Paris, 1982. | Zbl

[3] E.H. Brandt, Electric field in superconductors with regular cross-sections, Phys. Rev. B 52 (1995), 15442-15457.

[4] E. Dibenedetto, "Degenerate Parabolic Equations", Springer-Verlag, New York, 1993. | MR | Zbl

[5] C. Gerhardt, On the existence and uniqueness of a warpeningfunction in the elastic-plastic torsion of a cylindrical bar with multiply connected cross-section, A. Dold - B. Eckmann - P. Germain - B. Nayroles (eds.), Lecture Notes in Math. 503, Springer, Berlin, 1976. | MR | Zbl

[6] Y.B. Kim - C.F. Hempstead - A.R. Strnad, Critical persistent currents in hard superconductors, Phys. Rev. Lett. 9 (1962), 306-309.

[7] M.M. Kunze - M.D.P. Monteiro Marques, A note on Lipschitz continuous solutions of a parabolic quasi-variational inequality, In "Nonlinear Evolutionary Equations and their Applications", T. T. Li - L. W. Lin - J. F. Rodrigues (eds.), World Scientific, Singapore, 1999, pp. 109-115. | MR | Zbl

[8] M.M. Kunze - J.F. Rodrigues, An elliptic quasi-variational inequality with gradient constants and some of its applications, Math. Methods. Appl. Sci., to appear. | MR | Zbl

[9] O.A. Ladyzenskaja - V.A. Solonnikov - N.N. Ural'Ceva, "Linear and quasilinear equations of parabolic type", Translations of Mathematical Monographs 23, AMS, 1968. | MR | Zbl

[10] L. Prighozin, Variational model of sandpile growth, European J. Appl. Math. 7 (1996), 225-235. | MR | Zbl

[11] L. Prighozin, On the Bean critical state model in superconductivity, European J. Appl. Math. 7 (1996), 237-247. | MR | Zbl

[12] L. Santos, A diffusion problem with gradient constraint and evolutive Dirichlet condition, Portugaliae Mathematica 48 (1991), 441-468. | MR | Zbl

[13] J. Simon, Compact sets in the space Lp(0, T ; B), Ann. Mat. Pura Appl. 146 (1987), 65-96. | MR | Zbl