@article{ASNSP_2000_4_29_1_153_0, author = {Rodrigues, Jos\'e Francisco and Santos, Lisa}, title = {A parabolic quasi-variational inequality arising in a superconductivity model}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {153--169}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 29}, number = {1}, year = {2000}, mrnumber = {1765540}, zbl = {0953.35079}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2000_4_29_1_153_0/} }
TY - JOUR AU - Rodrigues, José Francisco AU - Santos, Lisa TI - A parabolic quasi-variational inequality arising in a superconductivity model JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2000 SP - 153 EP - 169 VL - 29 IS - 1 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2000_4_29_1_153_0/ LA - en ID - ASNSP_2000_4_29_1_153_0 ER -
%0 Journal Article %A Rodrigues, José Francisco %A Santos, Lisa %T A parabolic quasi-variational inequality arising in a superconductivity model %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2000 %P 153-169 %V 29 %N 1 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2000_4_29_1_153_0/ %G en %F ASNSP_2000_4_29_1_153_0
Rodrigues, José Francisco; Santos, Lisa. A parabolic quasi-variational inequality arising in a superconductivity model. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 29 (2000) no. 1, pp. 153-169. http://archive.numdam.org/item/ASNSP_2000_4_29_1_153_0/
[1] Variational and Quasivariational Inequalities. Applications to Free Boundary Problems", J. Wiley & Sons, Chischester-New York, 1984. | MR | Zbl
- , "[2] "Contrôle impulsionel et inéquations quasivariationelles", Dunod, Paris, 1982. | Zbl
- ,[3] Electric field in superconductors with regular cross-sections, Phys. Rev. B 52 (1995), 15442-15457.
,[4] Degenerate Parabolic Equations", Springer-Verlag, New York, 1993. | MR | Zbl
, "[5] On the existence and uniqueness of a warpeningfunction in the elastic-plastic torsion of a cylindrical bar with multiply connected cross-section, A. Dold - B. Eckmann - P. Germain - B. Nayroles (eds.), Lecture Notes in Math. 503, Springer, Berlin, 1976. | MR | Zbl
,[6] Critical persistent currents in hard superconductors, Phys. Rev. Lett. 9 (1962), 306-309.
- - ,[7] A note on Lipschitz continuous solutions of a parabolic quasi-variational inequality, In "Nonlinear Evolutionary Equations and their Applications", T. T. Li - L. W. Lin - J. F. Rodrigues (eds.), World Scientific, Singapore, 1999, pp. 109-115. | MR | Zbl
- ,[8] An elliptic quasi-variational inequality with gradient constants and some of its applications, Math. Methods. Appl. Sci., to appear. | MR | Zbl
- ,[9] "Linear and quasilinear equations of parabolic type", Translations of Mathematical Monographs 23, AMS, 1968. | MR | Zbl
- - ,[10] Variational model of sandpile growth, European J. Appl. Math. 7 (1996), 225-235. | MR | Zbl
,[11] On the Bean critical state model in superconductivity, European J. Appl. Math. 7 (1996), 237-247. | MR | Zbl
,[12] A diffusion problem with gradient constraint and evolutive Dirichlet condition, Portugaliae Mathematica 48 (1991), 441-468. | MR | Zbl
,[13] Compact sets in the space Lp(0, T ; B), Ann. Mat. Pura Appl. 146 (1987), 65-96. | MR | Zbl
,