L P -uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 30 (2001) no. 2, pp. 285-309.
@article{ASNSP_2001_4_30_2_285_0,
     author = {Liskevich, Vitali and R\"ockner, Michael and Sobol, Zeev and Us, Oleksiy},
     title = {$L^P$-uniqueness for infinite dimensional symmetric {Kolmogorov} operators : the case of variable diffusion coefficients},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {285--309},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 30},
     number = {2},
     year = {2001},
     mrnumber = {1895713},
     zbl = {1072.35196},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2001_4_30_2_285_0/}
}
TY  - JOUR
AU  - Liskevich, Vitali
AU  - Röckner, Michael
AU  - Sobol, Zeev
AU  - Us, Oleksiy
TI  - $L^P$-uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2001
SP  - 285
EP  - 309
VL  - 30
IS  - 2
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_2001_4_30_2_285_0/
LA  - en
ID  - ASNSP_2001_4_30_2_285_0
ER  - 
%0 Journal Article
%A Liskevich, Vitali
%A Röckner, Michael
%A Sobol, Zeev
%A Us, Oleksiy
%T $L^P$-uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2001
%P 285-309
%V 30
%N 2
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_2001_4_30_2_285_0/
%G en
%F ASNSP_2001_4_30_2_285_0
Liskevich, Vitali; Röckner, Michael; Sobol, Zeev; Us, Oleksiy. $L^P$-uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 30 (2001) no. 2, pp. 285-309. http://archive.numdam.org/item/ASNSP_2001_4_30_2_285_0/

[1] S. Albeverio - YU.G. Kondratiev - M. Röckner, An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Anal. 1 (1992), 307-317. | MR | Zbl

[2] S. Albeverio - Yu G. Kondratiev - M. Röckner, Addendum to: An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Anal. 2 (1993), 195-198. | MR | Zbl

[3] S. Albeverio - Yu. G. Kondratiev - M. Röckner, Dirichlet operators via stochastic analysis, J. Funct. Anal. 128 (1995), 102-138. | MR | Zbl

[4] G. Da Prato - L. Tubaro, Self-adjointness of some infinite dimensional elliptic operators and application to stochastic quantization, Prob. Th. Rel. Fields 118 (2000), 131-145. | MR | Zbl

[5] A. Eberle, "Uniqueness and non-uniqueness of singular diffusion operator", Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1999. | MR

[6] M. Fukushima - Y. Oshima - M. Takeda, "Dirichlet forms and symmetric Markov processes", de Gruyter, Berlin- New York, 1994. | MR | Zbl

[7] Yu G. Kondratiev - T.V. Tsikalenko, Dirichlet operators and associated differential equations, Selecta Mathematica Sovetica 10 (1991), 345-397. | Zbl

[8] V.A. Liskevich - M. Röckner, Strong uniqueness for a class of infinite dimensional Dirichlet operators and applications to stochastic quantization, Ann. Scuola. Norm. Sup. Pisa Cl. Sci (4) 27 (1998), 69-91. | Numdam | MR | Zbl

[9] V.A. Liskevich - M. Röckner - Z. Sobol, Dirichlet operators with variable coefficients in LP spaces of functions of infinitely many variables, Infinite Dim. Anal., Quantum Prob. and Related Topics, No.4, 2 (1999), 487-502. | MR | Zbl

[10] V.A. Liskevich - Yu. A. Semenov, Dirichlet operators: a-priori estimates and uniqueness problem, J. Funct. Anal. 109 (1992) 199-213. | MR | Zbl

[11] A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems", Birkhäuser, Basel-Boston- Berlin, 1995. | MR | Zbl

[12] Z.M. Ma - M. Röckner, "Introduction to the theory of (non-symmetric) Dirichlet forms", Springer-Verlag, Berlin-Heidelberg -New-York-London- Paris-Tokio, 1992. | MR | Zbl

[13] R. NAGEL (editor), "One-parameter Semigroups of Positive Operators", Lecture Notes in Mathematics, vol. 1184, Sringer, Berlin, 1986. | Zbl

[14] L. Schwartz, "Radon measures on arbitrary topological space and cylindrical measures", Oxford University Press, London, 1973. | MR | Zbl