@article{ASNSP_2001_4_30_3-4_535_0, author = {Dancer, Edward Norman}, title = {New solutions of equations on $\mathbb {R}^n$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {535--563}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 30}, number = {3-4}, year = {2001}, mrnumber = {1896077}, zbl = {1025.35009}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_535_0/} }
TY - JOUR AU - Dancer, Edward Norman TI - New solutions of equations on $\mathbb {R}^n$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2001 SP - 535 EP - 563 VL - 30 IS - 3-4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_535_0/ LA - en ID - ASNSP_2001_4_30_3-4_535_0 ER -
%0 Journal Article %A Dancer, Edward Norman %T New solutions of equations on $\mathbb {R}^n$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2001 %P 535-563 %V 30 %N 3-4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_535_0/ %G en %F ASNSP_2001_4_30_3-4_535_0
Dancer, Edward Norman. New solutions of equations on $\mathbb {R}^n$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 30 (2001) no. 3-4, pp. 535-563. http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_535_0/
[1] Symmetry breaking in Hamiltonian systems, Differential Equations 67 (1987), 165-184. | MR | Zbl
- - ,[2] Perturbations of Δu + un+2)/(n-2) = 0, the scalar curvature problem on Rn and related topics, J. Funct. Anal. 165 (1999), 117-149. | Zbl
- - ,[3] The regularity and local bifurcation of Stokes waves, Arch. Rational Mech. Anal. 152 (2000), 207-240. | MR | Zbl
- - ,[4] The subharmonic bifurcation of Stokes waves, Arch. Rational Mech. Anal. 152 (2000), 241-271. | MR | Zbl
- - ,[5] Calcul differentiel, Hermann, Paris, 1967. | MR | Zbl
, "[6] Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321-340. | MR | Zbl
- ,[7] Bifurcation perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161-180. | MR | Zbl
- ,[8] On the uniqueness of the positive solution of a singularly perturbed problem, Rocky Mountain J. Math. 25 (1995), 957-975. | MR | Zbl
,[9] On positive solutions of some singularly perturbed problems where the nonlinearity changes sign, Top. Methods Nonlinear Anal. 5 (1995), 141-175. | MR | Zbl
,[10] "Weakly nonlinear equations on long or thin domains", Mem. Amer. Math. Soc. 501 Providence, RI, 1993. | MR | Zbl
,[11] On the structure of solutions of nonlinear eigenvalue problems, Indiana Univ. Math. J. 23 (1974), 1069-1076. | MR | Zbl
,[12] Global structure of the solution set of non-linear real analytic eigenvalue problems, Proc. London Math. Soc. 26 (1973), 359-384.
,[13] Infinitely many turning points for some supercritical problems, to appear in Annali di Matematica. | MR | Zbl
,[14] The G-invariant implicit function theorem in infinite dimensions, Proc. Royal Soc. Edinburgh 92A (1982), 13-30. | MR | Zbl
,[15] The G-invariant implicit function theorem in infinite dimensions II, Proc. Royal Soc Edinburgh 102A (1986), 211-220. | MR | Zbl
,[16] Some notes on the method of moving planes, Bull Austra. Math. Soc. 46 (1992), 425-434. | MR | Zbl
,[17] Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations, pp. 255-273 In: "Nonlinear partial differential equations in science and engineering", R. Sternberg (ed.), Marcel Dekker, New York, 1980. | MR | Zbl
,[18] Symmetry of positive solutions of nonlinear elliptic equations on Rn, pp. 369-402 In: "Mathematical Analysis and Applications", Part A, L. Nachbin (ed.), Academic Press, New York, 1981. | Zbl
, - ,[19] "Elliptic partial differential equations of second order", 2nd edition, Springer-Verlag, Berlin, 1983. | MR | Zbl
- ,[20] "Subharmonic functions", Academic Press, London, 1976. | Zbl
- ,[21] "Real and abstract analysis", Springer-Verlag, Berlin, 1965. | Zbl
- ,[22] The topological degree on Banach manifolds, pp. 291-314 In: "Global analysis and its applications", Vol II, International atomic energy agency, Vienna, 1974. | MR | Zbl
,[23] "Perturbation theory for linear operators", Springer-Verlag, Berlin, 1966. | MR | Zbl
,[24] "Introduction à la théorie des points critiques", Springer-Verlag, Berlin, 1993. | MR
,[25] A bifurcation theorem for potential operators, J. Funct. Anal. 77 (1988), 1-8. | MR | Zbl
,[26] "Topological methods in the theory of nonlinear integral equations", Perganon, New York, 1964.
,[27] Uniqueness of the positive solution of Δu + f(u) = 0, in an annulus, Differential Integral Equations 4 (1991), 583-599. | Zbl
- ,[28] "Linear and quasilinear elliptic equations", Academic Press, New York, 1968. | MR | Zbl
- ,[29] A bifurcation theorem for potential operators, J. Funct. Anal. 25 (1977), 412-424. | MR | Zbl
,[30] Methods of modem mathematical physics volume IV: analysis of operators ", Academic Press, New York, 1978. | MR | Zbl
- , "[31] The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), 1-52. | MR | Zbl
,[32] "The homotopy index and partial differential equations", Springer-Verlag, Berlin, 1987. | MR | Zbl
,[33] Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations 4 (1979), 293-319. | MR | Zbl
- ,[34] On positive solutions of -Δu = F(x, u), Math Z. 182 (1983), 351-357. | Zbl
,[35] "Variational methods for the study of nonlinear operators", Holden Day, San Francisco, 1964. | MR | Zbl
,[36] Topology", Marcel Dekker, New York, 1972. | MR | Zbl
, "[37] Slow decay and the Harnack inequality for positive solutions of Δu + up = 0 in Rn, Differential Integral Equations 8 (1995), 1355-1368. | Zbl
,