Complexification of proper hamiltonian G-spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 30 (2001) no. 3-4, pp. 515-534.
@article{ASNSP_2001_4_30_3-4_515_0,
     author = {Stratmann, Bernd},
     title = {Complexification of proper hamiltonian $G$-spaces},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {515--534},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 30},
     number = {3-4},
     year = {2001},
     mrnumber = {1896076},
     zbl = {1072.32006},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_515_0/}
}
TY  - JOUR
AU  - Stratmann, Bernd
TI  - Complexification of proper hamiltonian $G$-spaces
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2001
SP  - 515
EP  - 534
VL  - 30
IS  - 3-4
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_515_0/
LA  - en
ID  - ASNSP_2001_4_30_3-4_515_0
ER  - 
%0 Journal Article
%A Stratmann, Bernd
%T Complexification of proper hamiltonian $G$-spaces
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2001
%P 515-534
%V 30
%N 3-4
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_515_0/
%G en
%F ASNSP_2001_4_30_3-4_515_0
Stratmann, Bernd. Complexification of proper hamiltonian $G$-spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 30 (2001) no. 3-4, pp. 515-534. http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_515_0/

[Ab74] H. Abels, Parallelizibility of proper actions, global K-slices and maximal compact subgroups, Math. Ann. 212 (1974), 1-19. | MR | Zbl

[AHH98] M. Ammon - P. Heinzner - A.T. Huckleberry, Kähler structures on symplectic reductions, (in preparation).

[Amm97] M. Ammon, "Komplexe Strukturen auf Quotienten von Kempf-Ness-Mengen ", Dissertation, Ruhr-Universität Bochum, February 1997. | Zbl

[Gra58] H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. 68 (1958), 460-473. | MR | Zbl

[GuSt84] V. Guillemin - S. Sternberg, "Symplectic techniques in Physics", Cambridge University Press, Cambridge London, 1984. | MR | Zbl

[He91] P. Heinzner, Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), 631-662. | MR | Zbl

[He93] P. Heinzner, Equivariant holomorphic extensions of real analytic manifolds, Bull. Soc. Math. France 121(1993), 445-463. | Numdam | MR | Zbl

[HH] P. Heinzner - A.T. Huckleberry, Complex geometry of Hamiltonian actions, (in preparation).

[HH00] P. Heinzner - A.T. Huckleberry, Kählerian structures on symplectic reductions, Complex Analysis and Algebraic Geometry, eds. Th. Peternell, F.-O. Schreyer., 225-253, 2000. | MR | Zbl

[HHK96] P. Heinzner - A. Huckleberry - F. Kutzschebauch, A real analytic version of Abels' theorem and complexifications of proper Lie group actions (Trento 1993), Complex Analysis and Geometry, Lecture Notes in Pure and Applied Mathematics, Dekker, New York Basel Hong Kong, 229-273, 1996. | MR | Zbl

[HHL94] P. Heinzner - A.T. Huckleberry - F. Loose, Kähler extensions of the symplectic reduction, J. reine angew. Math. 455 (1994), 123-140. | MR | Zbl

[Hir76] M.W. Hirsch, "Differential Topology", Graduate Texts in Mathematics. Springer-Verlag, New York Heidelberg Berlin, 1976. | MR | Zbl

[Ho65] G. Hochschild, "The structure of Lie groups", Holden-Day, San Francisco London Amsterdam, 1965. | MR | Zbl

[Il93] S. Illman, Every proper smooth action of a Lie group is equivalent to a real analytic action, Preprint MPI/93-3 Bonn, 1993.

[Kut94] F. Kutzschebauch, "Eigentliche Wirkungen von Liegruppen auf reell-analytischen Mannigfaltigkeiten", Dissertation, Ruhr-Universität Bochum, 1994. | Zbl

[Ku96] F. Kutzschebauch, On the uniqueness of the analyticity of a proper G-action, Manuscripte Math. 90(1) (1996), 17-22. | MR | Zbl

[MDSa95] D. Mcduff - D. Salamon, "Introduction to Symplectic Topology ", Clarendon Press Oxford, Oxford, 1995. | MR | Zbl

[Pa61] R.S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. 73(2) (1961), 295-323. | MR | Zbl

[OrigDiss] B. Stratmann, "Complexification of proper Hamiltonian G-spaces", Dissertation, Ruhr-Universität Bochum, 1998. | Zbl

[Wi93] J. Winkelmann, Invariant hyperbolic Stein domains, Manu. Math. 79 (1993), 329-334. | MR | Zbl