@article{ASNSP_2001_4_30_3-4_713_0, author = {Chen, Chiun-Chuan and Lin, Chang-Shou}, title = {A spherical {Harnack} inequality for singular solutions of nonlinear elliptic equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {713--738}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 30}, number = {3-4}, year = {2001}, mrnumber = {1896083}, zbl = {1072.35071}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_713_0/} }
TY - JOUR AU - Chen, Chiun-Chuan AU - Lin, Chang-Shou TI - A spherical Harnack inequality for singular solutions of nonlinear elliptic equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2001 SP - 713 EP - 738 VL - 30 IS - 3-4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_713_0/ LA - en ID - ASNSP_2001_4_30_3-4_713_0 ER -
%0 Journal Article %A Chen, Chiun-Chuan %A Lin, Chang-Shou %T A spherical Harnack inequality for singular solutions of nonlinear elliptic equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2001 %P 713-738 %V 30 %N 3-4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_713_0/ %G en %F ASNSP_2001_4_30_3-4_713_0
Chen, Chiun-Chuan; Lin, Chang-Shou. A spherical Harnack inequality for singular solutions of nonlinear elliptic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 30 (2001) no. 3-4, pp. 713-738. http://archive.numdam.org/item/ASNSP_2001_4_30_3-4_713_0/
[1] Nonexistence of positive solutions to semilinear elliptic equations on Rn or Rn+ through the method of moving planes, Comm. Partial Differential Equation 22 (1997), 1671-1670. | MR | Zbl
,[2] A sup + inf inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Func. Anal. 115 (1993), 34.4.-358. | MR | Zbl
- - ,[3] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev exponent, Comm. Pure Appl. Math. 42 (1989),271-297. | MR | Zbl
- - ,[4] Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615-622. | MR | Zbl
- ,[5] Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent, Duke Math. J., 78 (1995), 315-334. | MR | Zbl
- ,[6] On compactness and completeness of conformal metrics in Rn, Asian J. Math.1 (1997), 549-559. | MR | Zbl
- ,[7] Estimates of the conformal scalar curvature equation via the method of moving planes, Comm. Pure Appl. Math. 50 (1997), 971-1017. | MR | Zbl
- ,[8] On the asymptotic symmetry of singular solutions of the scalar curvature equations, Math. Ann. 313 (1999), 229-245. | MR | Zbl
- ,[9] Symmetry of positive solutions of nonlinear equations in Rn, In: "Mathematical Analysis and Applications", part A, pp. 369-402, Advances in Math. Supp. Stud. 79, Academic Press, New York-London, 1981. | Zbl
- - ,[10] Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math. 135 (1999), 233-272. | MR | Zbl
- - - ,[11] Local asymptotic symmetry of Singular Solutions to Nonlinear Elliptic Equations, Invent. Math. 123 (1996), 221-232. | MR | Zbl
,[12] Harnack type inequality: the method of moving planes, Comm. Math. Phys. 200 (1999), 421-444. | MR | Zbl
,[13] On Liouville theorem and apriori estimate for the scalar curvature equations, Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 107-130. | Numdam | MR | Zbl
,[14] Estimates of the conformal scalar curvature equation via the method of moving planes III, Comm. Pure Appl. Math. 53 (2000), 611-646. | MR | Zbl
,[15] A construction of singular solutions for semilinear elliptic equation using asymptotic analysis, J. Differential Geom. 44 (1996), 331-370. | MR | Zbl
- ,[16] Compactness results for complete metrics of constant positive scalar curvature on of subdomains of Sn' Indiana Univ. Math. J. 42 (1993), 1441-1456. | MR | Zbl
,[17] The existence of weak solutions with prescribed singular behavior for a conformal invariant scalar equation, Comm. Pure Appl. Math. 41 (1988), 317-392. | MR | Zbl
,[18] A symmetry problem in potential theory, Arch. Rat. Mech. Anal. 43 (1971), 304-318. | MR | Zbl
,[19] On the growth of superharmonic functions near an isolated singularity I, J. Differential Equations 158 (1999), 28-47. | MR | Zbl
,