Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 1, pp. 139-170.

In this paper we concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound the blow-up rate from below, for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than (T-t) -1 , the expected one. Moreover, we show that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.

Classification : 35Q55, 35B33, 35B40, 35Q40
Banica, Valeria 1

1 Dipartimento di Matematica Università di Pisa Via F. Buonarroti 2 56127 Pisa, Italy
@article{ASNSP_2004_5_3_1_139_0,
     author = {Banica, Valeria},
     title = {Remarks on the blow-up for the {Schr\"odinger} equation with critical mass on a plane domain},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {139--170},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 3},
     number = {1},
     year = {2004},
     mrnumber = {2064970},
     zbl = {1170.35528},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2004_5_3_1_139_0/}
}
TY  - JOUR
AU  - Banica, Valeria
TI  - Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2004
SP  - 139
EP  - 170
VL  - 3
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2004_5_3_1_139_0/
LA  - en
ID  - ASNSP_2004_5_3_1_139_0
ER  - 
%0 Journal Article
%A Banica, Valeria
%T Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2004
%P 139-170
%V 3
%N 1
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2004_5_3_1_139_0/
%G en
%F ASNSP_2004_5_3_1_139_0
Banica, Valeria. Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 1, pp. 139-170. http://archive.numdam.org/item/ASNSP_2004_5_3_1_139_0/

[1] C. Antonini, Lower bounds for the 𝕃 2 minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Differential Integral Equations 15 (2002), 749-768. | MR | Zbl

[2] H. Brézis - T. Gallouët, Nonlinear Schrödinger evolution equation, Nonlinear Anal. 4 (1980), 677-681. | Zbl

[3] N. Burq - P. Gérard, N. Tzvetkov, Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (2003), 1-19. | MR | Zbl

[4] T. Cazenave, “An introduction to nonlinear Schrödinger equations”, Textos de Métodos Matemáticos 26, Instituto de Matemática-UFRJ, Rio de Janeiro, 1996.

[5] T. Cazenave - F. B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in H 1 , Manuscripta Math. 61 (1988), 477-494. | MR | Zbl

[6] T. Cazenave - F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, In: “Nonlinear semigroups, partial differential equations and attractors” (Washington, 1987), Lecture Notes in Math., 1394, Springer, Berlin, 1989, pp 18-29. | MR | Zbl

[7] I. Gallagher - P. Gérard, Profile decomposition for the wave equation outside a convex obstacle, J. Math. Pures Appl. 80 (2001), 1-49. | MR | Zbl

[8] J. Ginibre - G. Velo, On a class of Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), 1-71. | MR | Zbl

[9] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), 1794-1797. | MR | Zbl

[10] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré - Physique Théorique 46 (1987), 113-129. | Numdam | MR | Zbl

[11] O. Kavian, A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), 193-203. | MR | Zbl

[12] M. K. Kwong, Uniqueness of positive solutions of Δu-u+u p =0 in N , Arch. Ration. Mech. Anal. 105 (1989), 243-266. | MR | Zbl

[13] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré - Anal. Non Linéaire 1 (1984), 109-145. | Numdam | MR | Zbl

[14] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré - Anal. Non Linéaire 1 (1984), 223-283. | Numdam | MR | Zbl

[15] M. Marcus - V. J. Mizel, Nemytskij operators in Sobolev spaces, Arch. Ration. Mech. Anal. 51 (1973), 347-370. | MR | Zbl

[16] M. Maris, Existence of nonstationary bubbles in higher dimensions, J. Math. Pures. Appl. 81 (2002), 1207-1239. | MR | Zbl

[17] F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power, Duke Math. J. 69 (1993), 427-454. | MR | Zbl

[18] F. Merle, Asymptotics for L 2 minimal blow-up solutions of critical nonlinear Schrödinger equation, Ann. Inst. H. Poincaré - Anal. Non Linéaire 13 (1996), 553-565. | Numdam | MR | Zbl

[19] F. Merle - P. Raphaël, Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), 591-642. | MR | Zbl

[20] F. Merle - P. Raphaël, On blow-up profile for critical non linear Schrödinger equation, Université de Cergy-Pontoise, preprint (2003).

[21] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) (1959), 115-162. | Numdam | MR | Zbl

[22] T. Ogawa - T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger equations, J. Math. Anal. Appl. 155 (1991), 531-540. | MR | Zbl

[23] T. Ogawa - Y. Tsutsumi, Blow-up solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary conditions, Springer Lecture Notes in Math. 1450 (1990), 236-251. | MR | Zbl

[24] M. Reed - B. Simon, “Methods of modern mathematical Physics IV : Analysis of Operators”, Academic Press, New York, 1978. | MR | Zbl

[25] C. Sulem - P. L. Sulem, “The nonlinear Schrödinger equation. Self-focusing and wave collapse”, Applied Math. Sciences, 139, Springer-Verlag, New York, 1992. | Zbl

[26] M. V. Vladimirov, On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR 275 (1984), 780-783. | MR | Zbl

[27] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolate estimates, Comm. Math. Phys. 87 (1983), 567-576. | MR | Zbl

[28] M. I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations 11 (1986), 545-565. | MR | Zbl

[29] M. I. Weinstein, Modulation stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), 472-491. | MR | Zbl

[30] V. E. Zakharov, Collapse of Lagmuir waves, Sov. Phys. JETP 35 (1972), 908-914.