In this paper we concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound the blow-up rate from below, for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than , the expected one. Moreover, we show that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.
@article{ASNSP_2004_5_3_1_139_0, author = {Banica, Valeria}, title = {Remarks on the blow-up for the {Schr\"odinger} equation with critical mass on a plane domain}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {139--170}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {1}, year = {2004}, mrnumber = {2064970}, zbl = {1170.35528}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2004_5_3_1_139_0/} }
TY - JOUR AU - Banica, Valeria TI - Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 139 EP - 170 VL - 3 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2004_5_3_1_139_0/ LA - en ID - ASNSP_2004_5_3_1_139_0 ER -
%0 Journal Article %A Banica, Valeria %T Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 139-170 %V 3 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2004_5_3_1_139_0/ %G en %F ASNSP_2004_5_3_1_139_0
Banica, Valeria. Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 1, pp. 139-170. http://archive.numdam.org/item/ASNSP_2004_5_3_1_139_0/
[1] Lower bounds for the minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Differential Integral Equations 15 (2002), 749-768. | MR | Zbl
,[2] Nonlinear Schrödinger evolution equation, Nonlinear Anal. 4 (1980), 677-681. | Zbl
- ,[3] N. Tzvetkov, Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (2003), 1-19. | MR | Zbl
- ,[4] “An introduction to nonlinear Schrödinger equations”, Textos de Métodos Matemáticos 26, Instituto de Matemática-UFRJ, Rio de Janeiro, 1996.
,[5] The Cauchy problem for the nonlinear Schrödinger equation in , Manuscripta Math. 61 (1988), 477-494. | MR | Zbl
- ,[6] Some remarks on the nonlinear Schrödinger equation in the critical case, In: “Nonlinear semigroups, partial differential equations and attractors” (Washington, 1987), Lecture Notes in Math., 1394, Springer, Berlin, 1989, pp 18-29. | MR | Zbl
- ,[7] Profile decomposition for the wave equation outside a convex obstacle, J. Math. Pures Appl. 80 (2001), 1-49. | MR | Zbl
- ,[8] On a class of Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), 1-71. | MR | Zbl
- ,[9] On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), 1794-1797. | MR | Zbl
,[10] On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré - Physique Théorique 46 (1987), 113-129. | Numdam | MR | Zbl
,[11] A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), 193-203. | MR | Zbl
,[12] Uniqueness of positive solutions of in , Arch. Ration. Mech. Anal. 105 (1989), 243-266. | MR | Zbl
,[13] The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré - Anal. Non Linéaire 1 (1984), 109-145. | Numdam | MR | Zbl
,[14] The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré - Anal. Non Linéaire 1 (1984), 223-283. | Numdam | MR | Zbl
,[15] Nemytskij operators in Sobolev spaces, Arch. Ration. Mech. Anal. 51 (1973), 347-370. | MR | Zbl
- ,[16] Existence of nonstationary bubbles in higher dimensions, J. Math. Pures. Appl. 81 (2002), 1207-1239. | MR | Zbl
,[17] Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power, Duke Math. J. 69 (1993), 427-454. | MR | Zbl
,[18] Asymptotics for minimal blow-up solutions of critical nonlinear Schrödinger equation, Ann. Inst. H. Poincaré - Anal. Non Linéaire 13 (1996), 553-565. | Numdam | MR | Zbl
,[19] Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), 591-642. | MR | Zbl
- ,[20] On blow-up profile for critical non linear Schrödinger equation, Université de Cergy-Pontoise, preprint (2003).
- ,[21] On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) (1959), 115-162. | Numdam | MR | Zbl
,[22] Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger equations, J. Math. Anal. Appl. 155 (1991), 531-540. | MR | Zbl
- ,[23] Blow-up solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary conditions, Springer Lecture Notes in Math. 1450 (1990), 236-251. | MR | Zbl
- ,[24] “Methods of modern mathematical Physics IV : Analysis of Operators”, Academic Press, New York, 1978. | MR | Zbl
- ,[25] “The nonlinear Schrödinger equation. Self-focusing and wave collapse”, Applied Math. Sciences, 139, Springer-Verlag, New York, 1992. | Zbl
- ,[26] On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR 275 (1984), 780-783. | MR | Zbl
,[27] Nonlinear Schrödinger equations and sharp interpolate estimates, Comm. Math. Phys. 87 (1983), 567-576. | MR | Zbl
,[28] On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations 11 (1986), 545-565. | MR | Zbl
,[29] Modulation stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), 472-491. | MR | Zbl
,[30] Collapse of Lagmuir waves, Sov. Phys. JETP 35 (1972), 908-914.
,