In this paper, we prove that integral -varifolds in codimension 1 with , , have quadratic tilt-excess decay for -almost all , and a strong maximum principle which states that these varifolds cannot be touched by smooth manifolds whose mean curvature is given by the weak mean curvature , unless the smooth manifold is locally contained in the support of .
@article{ASNSP_2004_5_3_1_171_0, author = {Sch\"atzle, Reiner}, title = {Quadratic tilt-excess decay and strong maximum principle for varifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {171--231}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {1}, year = {2004}, mrnumber = {2064971}, zbl = {1096.49023}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2004_5_3_1_171_0/} }
TY - JOUR AU - Schätzle, Reiner TI - Quadratic tilt-excess decay and strong maximum principle for varifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 171 EP - 231 VL - 3 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2004_5_3_1_171_0/ LA - en ID - ASNSP_2004_5_3_1_171_0 ER -
%0 Journal Article %A Schätzle, Reiner %T Quadratic tilt-excess decay and strong maximum principle for varifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 171-231 %V 3 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2004_5_3_1_171_0/ %G en %F ASNSP_2004_5_3_1_171_0
Schätzle, Reiner. Quadratic tilt-excess decay and strong maximum principle for varifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 3 (2004) no. 1, pp. 171-231. http://archive.numdam.org/item/ASNSP_2004_5_3_1_171_0/
[All72] On the first variation of a varifold, Ann. of Math. 95 (1972), 417-491. | MR | Zbl
,[Bra78] “The motion of a surface by its mean curvature”, Princeton University Press, 1978. | MR | Zbl
,[Cab00] oral communication.
,[Caf89] Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math., 130 (1989), 189-213. | MR | Zbl
,[CafCab] “Fully Nonlinear Elliptic equations”, American Mathematical Society, 1996. | MR | Zbl
- ,[CafCKS96] On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math. 49, (1996), 365-397. | MR | Zbl
- - - ,[CIL] User's Guide to Viscosity Solutions of second Order Partial Differential Equations, Bull. Amer. Math. Soc. 27 (1992), 1-67. | MR | Zbl
- - ,[DuSt94] Comparison principles for hypersurfaces of prescribed mean curvature, J. Reine Angew. Math. 457 (1994), 71-83. | MR | Zbl
- ,[Es93] apriori estimates for solutions of fully non-linear equations, Indiana Univ. Math. J. 42 (1993), 413-423. | MR | Zbl
,[Ev82] Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), 333-363. | MR | Zbl
,[F] “Geometric Measure Theory”, Springer Verlag, Grund. Math. Wiss., Band 153, Berlin - Heidelberg - New York, 1969. | MR | Zbl
,[GT] “Elliptic Partial Differential Equations of Second Order”, Springer Verlag, Berlin - Heidelberg - New York - Tokyo 1983. | MR | Zbl
- ,[Il96] A strong maximum principle for singular minimal hypersurfaces, Calc. Var. Partial Differential Equations, 4 (1996), 443-467. | MR | Zbl
,[Kry83] Boundedly nonhomogeneous elliptic and parabolic equations, Math. USSR Izv. 20 (1983), 459-492. | Zbl
,[Mo77] Principio di Massimo Forte per le Frontiere di Misura Minima, Ann. Univ. Ferrara, Sez. VII - Sc. Mat. 23 (1977), 165-168. | MR | Zbl
,[Resh68] Generalized derivatives and differentiability almost everywhere, Math. USSR-Sb. 4 (1968), 293-302. | MR | Zbl
,[Sch01] Hypersurfaces with mean curvature given an ambient Sobolev function, J. Differential Geom. 58 (2001), 371-420. | MR | Zbl
,[Sim] “Lectures on Geometric Measure Theory”, Proceedings of the Centre for Mathematical Analysis Australian National University, Volume 3, 1983. | MR | Zbl
,[Sim87] A strict maximum principle for area minimizing hypersurfaces, J. Differential Geom. 26 (1987), 327-335. | MR | Zbl
,[SW89] A Strong Maximum Principle for Varifolds that are Stationary with Respect to Even Parametric Elliptic Functionals, Indiana Univ. Math. J. 38 (1989), 683-691. | MR | Zbl
- ,[T89] On the twice differentiability of viscosity solutions of nonlinear elliptic equations, Bull. Austral. Math. Soc. 39 (1989), 443-447. | MR | Zbl
,[Wa92] On the regularity theory of fully nonlinear parabolic equations I, Comm. Pure Appl. Math. 45 (1992), 27-76. | MR | Zbl
,[Wh34] Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89. | JFM | MR | Zbl
,[Wi04] “-Randabschätzungen für Lösungen von voll nicht-linearen elliptischen Gleichungen”, diploma thesis, 2004.
,[Zie] “Weakly Differentiable Functions”, Springer Verlag, 1989. | MR | Zbl
,