In the euclidean setting the celebrated Aleksandrov-Busemann-Feller theorem states that convex functions are a.e. twice differentiable. In this paper we prove that a similar result holds in the Heisenberg group, by showing that every continuous -convex function belongs to the class of functions whose second order horizontal distributional derivatives are Radon measures. Together with a recent result by Ambrosio and Magnani, this proves the existence a.e. of second order horizontal derivatives for the class of continuous -convex functions in the Heisenberg group.
@article{ASNSP_2004_5_3_2_349_0, author = {Guti\'errez, Cristian E. and Montanari, Annamaria}, title = {On the second order derivatives of convex functions on the {Heisenberg} group}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {349--366}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {2}, year = {2004}, mrnumber = {2075987}, zbl = {1170.35352}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2004_5_3_2_349_0/} }
TY - JOUR AU - Gutiérrez, Cristian E. AU - Montanari, Annamaria TI - On the second order derivatives of convex functions on the Heisenberg group JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 349 EP - 366 VL - 3 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2004_5_3_2_349_0/ LA - en ID - ASNSP_2004_5_3_2_349_0 ER -
%0 Journal Article %A Gutiérrez, Cristian E. %A Montanari, Annamaria %T On the second order derivatives of convex functions on the Heisenberg group %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 349-366 %V 3 %N 2 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2004_5_3_2_349_0/ %G en %F ASNSP_2004_5_3_2_349_0
Gutiérrez, Cristian E.; Montanari, Annamaria. On the second order derivatives of convex functions on the Heisenberg group. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 2, pp. 349-366. http://archive.numdam.org/item/ASNSP_2004_5_3_2_349_0/
[1] Weak diferentiability of BV functions on stratified groups, http://cvgmt.sns.it/papers/ambmag02/ | Zbl
- ,[2] Regularity of convex functions on Heisenberg groups, http://cvgmt.sns.it/papers/balric/convex.pdf | Numdam | MR
- ,[3] Notions of convexity in Carnot groups, Comm. Anal. Geom. 11 (2003), 263-341. | MR | Zbl
- - ,[4] “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992. | MR | Zbl
- ,[5] Maximum and comparison principles for convex functions on the Heisenberg group, Comm. Partial Differential Equations, to appear. | MR | Zbl
- ,[6] Convex functions on Carnot groups, Preprint. | MR
- - - ,[7] Convex functions on the Heisenberg group, Calc. Var., Partial Differential Equations, to appear. | MR | Zbl
- - ,[8] Lipschitz continuity
,[9] “Harmonic Analysis: Real Variable methods, Orthogonality and Oscillatory Integrals”, Vol. 43 of the Princeton Math. Series. Princeton U. Press. Princeton, NJ, 1993. | MR | Zbl
,[10] Hessian measures I, Topol. Methods Nonlinear Anal. 10 (1997), 225-239. | MR | Zbl
- ,[11] Viscosity convex functions on Carnot groups, http://arxiv.org/abs/math.AP/0309079, | Zbl
,