We discuss differentiability properties of convex functions on Heisenberg groups. We show that the notions of horizontal convexity (h-convexity) and viscosity convexity (v-convexity) are equivalent and that h-convex functions are locally Lipschitz continuous. Finally we exhibit Weierstrass-type h-convex functions which are nowhere differentiable in the vertical direction on a dense set or on a Cantor set of vertical lines.
@article{ASNSP_2003_5_2_4_847_0, author = {Balogh, Zolt\'an M. and Rickly, Matthieu}, title = {Regularity of convex functions on {Heisenberg} groups}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {847--868}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 2}, number = {4}, year = {2003}, mrnumber = {2040646}, zbl = {1121.43007}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2003_5_2_4_847_0/} }
TY - JOUR AU - Balogh, Zoltán M. AU - Rickly, Matthieu TI - Regularity of convex functions on Heisenberg groups JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2003 SP - 847 EP - 868 VL - 2 IS - 4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_2003_5_2_4_847_0/ LA - en ID - ASNSP_2003_5_2_4_847_0 ER -
%0 Journal Article %A Balogh, Zoltán M. %A Rickly, Matthieu %T Regularity of convex functions on Heisenberg groups %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2003 %P 847-868 %V 2 %N 4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_2003_5_2_4_847_0/ %G en %F ASNSP_2003_5_2_4_847_0
Balogh, Zoltán M.; Rickly, Matthieu. Regularity of convex functions on Heisenberg groups. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 2 (2003) no. 4, pp. 847-868. http://archive.numdam.org/item/ASNSP_2003_5_2_4_847_0/
[1] Convex viscosity solutions and state constraints, J. Math. Pures Appl. (76) 9 (1997), 265-288. | MR | Zbl
- - ,[2] “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, Oxford Science Publications, Clarendon Press, Oxford, 2000. | MR | Zbl
- - ,[3] Weak differentiability of BV functions on stratified groups, Math. Z. (1) 245 (2003), 123-153. | MR | Zbl
- ,[4] Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric, Publ. Mat. 47 (2003), 237-259. | MR | Zbl
- - ,[5] On -harmonic functions on the Heisenberg group, Comm. Partial Differential Equations 27 (2002), 727-762. | MR | Zbl
,[6] Fully nonlinear elliptic equations, AMS colloquium publications 43, AMS, Providence, RI, 1995. | MR | Zbl
- ,[7] Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. (2) 282 (1984), 487-502. | MR | Zbl
- - ,[8] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (1) 27 (1992), 1-67. | MR | Zbl
- - ,[9] Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc. 83 (1981), 69-70. | MR | Zbl
,[10] Notions of convexity in Carnot groups, Comm. Anal. Geom. (2) 11 (2003), 263-341. | MR | Zbl
- - ,[11] The theorem of Busemann-Feller-Alexandrov in Carnot groups, preprint. | MR | Zbl
- - - ,[12] “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics, CRC Press, 1992. | MR | Zbl
- ,[13] “Fractal Geometry: Mathematical Foundations and Applications”, John Wiley & Sons, 1990. | MR | Zbl
,[14] Maximum and comparison principles for convex functions on the Heisenberg group, preprint. | MR | Zbl
- ,[15] On the second order derivatives of convex functions on the Heisenberg group, preprint. | Numdam | MR
- ,[16] Superharmonicity of nonlinear ground states, Rev. Math. Iberoam. 16 (2000), 17-27. | MR | Zbl
- - ,[17] Convex functions on the Heisenberg group, to appear in Calc. Var. Partial Differential Equations. | MR | Zbl
- - ,[18] Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions, preprint. | MR | Zbl
,[19] “Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability”, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1995. | MR | Zbl
,[20] A version of the Hopf-Lax formula in the Heisenberg group, Comm. Partial Differential Equations 27 (2002), 1139-1159. | MR | Zbl
- ,[21] Métriques de Carnot-Carathéodory et quasiisométries des espaces symmétriques de rang un, Ann. Math. 129 (1989), 1-60. | MR | Zbl
,